1.1-1.2

Problem (1.1.5). Let Y be a modification of X, and suppose both processes have a.s. right-continuous sample paths. Then X,Y
are indistinguishable.

Proof. Let N = Q" C R™, which is a dense subset, then P[X;, = Y;,,t, € A] = 1. Call the set in the argument (). Let
w € O, and t € R" be arbitrary. Then there exists {t,} C N such that X;(w) = lim; _,;+ X}, (w) = limy _;+ Y(w)s, =
Y (w):. Hence X¢(w) = Yi(w) for all t > 0 for all w € Q. QED. O

Problem (1.1.7). let X be a process, every sample path of which is RCLL (i.e., right-continuous with finite left-hand limit). Let A
be the event that X is continuous on [0, t,). Show that A € .7-"%.

Proof. Let A be the above set, question is what characterizes continuity?

1
{X¢ continuous on [0,£)} = (| | N {1Xx = Xy| < =}
n€N 5eQ+ x,y€[0,t))NQT,|x—y|<d n

where {|X, — X;| < %} € Fy, for x,y < tp and we have only countable union and intersections above, so A € F3,. [

Problem (1.1.8). Let X be a process whose sample paths are RCLL a.s. and let A be the event that X is continuous on [0, tp).
Show that A can fail to be in .7-'30(, but if the F; is that ]-'tX C Fiand Fy is complete under the probability measure IP, then A € Fy,.

Proof. Let B be the set for which X;(w) is not right continuous or has no left limit. Then A° = {X;- # X;} N {X;-
exists} U {X; not right continuous for some t} U {X;- does not exist for some t}, where {X;- exists}, {X; not right
continuous for some t},{X;- does not exist for some t} where t < fy are all null sets since they are subsets of B.
However, we do not konw if they are measurable. However, if ]-'t{f is complete under PP, the the arguments of the

previous problem would work exactly same with those null sets in ]:t)g. O

Problem (1.1.10). Let X be a process with every sample path LCRL (i.e. left-continuous on (0,00) with right hand limit on
[0,00)), and let A be the event that X is continuous on [0, to]. Let X be adapted to a right-continuous filtration {F;}. Show that
A€ ]:tO'

Proof. Not sure why we need the right continuity, but anayway, A is the set where X;(w) is uniformly continuous on
[O , i’o] :

A= U N % - Xel <}

n€EN eQ+ t1,t,€[0,t]NQT, |t — £ | <

Problem (1.1.16). If the process X is measurable and the random time T is finite, then the function Xt is a random variable.

Proof. X measurable means X;(w) € F x B(RT). T < a < oo insures Xt is defined for all w, then composition of
measurable function is measurable. O

Problem (1.1.17). Let X be a measurable process and T a random time. Show that the collection of all sets of of the form { Xt € A}
where A € B(R) together with the set {T = oo}, forms a sub-o-field of F. We call this o-field generated by Xr.

Proof. First, {T = oo} € F since T takes values on the extended positive real line, then by previous problem, we are
done. O

Problem (1.2.2). Let X be a stochastic process with T a stopping time of {FX}. Suppose for some w,w’ € Q, we have
Xi(w) = X¢ (') forall t € [0, T(w)] N[0, 00). Show that T(w) = T(w').

Proof. Hint from: https://math.stackexchange.com/questions/62558o/equality-of-value-implies-equality-of-stopping-time
First show «w’ € {T < T(w)}: The collection C of subsets A C Q) such that 14(w) = 14(«w’) forms a o-field. Suppose
Xi(w) = X¢(w') for all t € [0, T(w)], and let B € B(R), then X; 1(B) € C for all t € [0, T(w)], hence o(X;) € C, hence

(X0 <t < T(w)) = .7-'%((“}) C C. Therefore, ' € {T < T(w)} € ]-'%((w). Then the same arugument show that other

inclusion, hence we are done. O

For next two problem:
Let X be stochastic process with right-continuous paths, which is adapted to a filtration {¥;}. Consider a subset
T € B(R?) of the state space of the process, and define the hitting time:

Hr(w) =inf{t > 0: X;(w) € T'}



Problem (1.2.6). If T is open, show that Hr is an optional time.

Proof. For simplicity, call Hr to be T. By definition of the hitting time, if T(w) =s < t, then V6 > 0, Ay = {Xi(w) : s <
t<s+0}NT # @, let Xy (w) € As. Since T is open, for all € > 0, we have B = B(Xj,(w),€e) C I'. By right continuity,
there exists v > 0 such that {X; : t; < t < t;+ ¢} C B, where 7 can be arbitrarily small. Therefore, for all § > 0, there
exists z € [s,s +6) NQ™T such that X,(w) € T, in other words, z can be taken to be less than t. Therefore, we have the
following

{T<t}= Use[O,t)ﬁQ+{X5 er}

since the D is obvious and C is proven above, then {Xs € T'} € F;, so is the countable union, hence we are done. [J
Problem (1.2.7). If the set I is closed and the sample paths of the process X are continuous, then Hr is a stopping time.

Proof. LetT,, = {x € R" : dist(x,T) < %}, which is open, and T, be the hitting time of I';, which is an optional time
from the previous problem. By continuity, T,, — Hr pointwise from below.

Can we say {Hr < t} = lim, {7, < t}? No, at least not at this point.

Note if Hr(w) =0 <= T,(w) = 0Vn.
For t # 0 we have Hp(w) <t = limy e Ty (w) < t < T, (w) < t for all n > 1. Therefore, for t > 0, we have

{T<ty=N{Tu<tter
nelN

The answer key says T, — T is not obvious, so let’s show it. Let’s consider any particular path, so everything
above is fixed and not random. Since T}, is bounded above and nondecreasing, since it converges to some H. Then
Xy € Nyen I'n =T. Now, if H < T, then we’d have a contradiction. O]

Problem (1.2.10). Let T, S be optional times; then T + S is optional. It is a stopping time if one of the following conditions holds:

(T >0,5>0;
(ii)T > 0, S is a stopping time

Proof. For the first part, we can do the following decomposition:
{§+T>t}={S>0,T>t}U{T>0,S>t}U{0<S<ESH+T>tU{0<S<tS+T>t}
The first two sets are in F;, and we only need to show one of the fourth and third set is in F;. So consider the third set
1
{o<s<tS+T>t} =) {OSSSH—;,S-I—TZf}
nelN

= U ﬂ{r§s<t+1,S+th}
re{0}UQ+N[0,1] nEN n

= U ﬂ{r§S<t+1,s+T2t}
re{0}UQ+N[0,¢] nEN n

c Fi

Therefore, it is a optional time.
(i) From Lemma 2.9 we have

{T+S>t}={T=0,S>t}U{T>tS=0}U{T>tS>0}U{0<T<tT+S >t}
={T>t}U{T<tT+S>t}

Where the first set is already in F}, so let’s consider the second one:

{0<T<t,5+T>ty= |J {r<T<tS+r>t}
reQ+N(0,t)

1
= U Uf{r<T<tS+r>t+-}
reQtn(0,t) neN n

which is an element of F;.



(ii) Now assume T > 0 and S is stopping time, we stil use the same decomposition:

{T+S>t} ={T=0,S>t}U{T>tS=0}U{T>S>0U{0<T<tT+S>t}
={T>tS=0}U{T>t}U{T <t T+S>t}

first and second sets are in F;. We can rewrite the last set as

{0<T<t,54+T>tt= |J {r<T<tS+r>t}
reQtn(o,t)

which is in F;. O

Problem (1.2.13). Verify that Fr is actually a o-field and T is Fr measurable. Show that if T(w) = t for some constant t > 0
forall w € Q), then Fr = Fy.

Proof. Recall that Fr = {A € F : AN{T < t} € F;}. Obviously, it is closed under countable internsections:
Nnen An N{T <t} = Nyen(An N{T < t}) € F;. Now let A € Fr, consider

AT <t} =(AN{T <tHUHT <t} n{T > t})
=(AN{T >t})n{T <t}
=(AN{T <t})N{T <t}
Now, o(T) is generated by T~1((—oo,t]) € Fr, hence the generated ¢ algebra is also a subset of Fr.

Finally, let T = ¢t, then {T <t} = O, and if A € Fr, then ANQ = A € F; so Fr C F;. For the other direction, if
A€ Fi, then AN{T <t} = A € F}, so we are done. O

Excercise (1.2.13). Let T be a stopping time and S be a random time such that S > T on Q). If S is Fr measurable, then S is also
a stopping time.

Proof. Here we need to show {S < t} € F; for all t > 0, however, we have {S < t} N{T <t} € F;,but {S <t} C{T <
t}, so we are done.

O

Problem (1.2.17). Let T, S be stopping times and Z be an integrable random variable. We have
(i)E[Z|Fr] = E[Z|Fsp1], P-a.s. on {T < S}
(i) E[E(Z|F1)|Fs] = E[Z|Fras], P-as.

Proof. (i) From Lemma 1.2.16 we have that {T < S} or vice-versa (not sure if I spelled it right) is in Fr,gs, and from
Lemma 1.2.15 we have Frxs C Fr. let A C Frag, and consider

/AQ{TSS}E[ZU:T]d]P = E[Z1 pnqr<sy] = /AO{TSS}E[Z\}'SAT]d]P

Now, let A € Fr and consider AN {T < S}, if we can show it is in Fgar, then we are done. However, we have
AN{T<S}IN{SAT <t} =AnN{T<S}N{S<t}U{T <t})
=(AN{T<S<IHUAN{T <S}N{T <t})

where the second part is in F;. For the first part we have

Am{TgSgt}:Am( U {Tgr}m{rgsgt})

reQ*tnIo,t

which is in F}, so we are done.
(i) E[Z|Fsar) = E[E(Z|F1)|Fras] = EIE(Z|F7)|Fs] on {S < T}. On {T < S} we have E[E(Z|F7)|Fs] =
E[E(Z|Fras)|Fs] = E[Z|Fras]- O

Problem (1.2.19). Let X;, F; be progressively measurable process and T be a stopping time and f(t,x) : [0,00) x RY — R is a

bounded B([0,0)) @ B(R?)-measurable function, show that the process Y; = fot f(s,Xs)ds; t > 0 is progressively measurable
with repsect to F, and Yt is an Fr measurable random variable.



Proof. By Proposition 1.1.13, we only need to show Y; is adapted. Fix s > 0, then f(s,x) — R is B (]Rd) measurable,
and w — Xs(w) : (Q, Ft) — (RY, B(R?)) measurable, hence the composed function f(s, Xs(w)) is Fs measurable. This

is true for any R ® R, B(R*) ® B(R?) measurable function. Then by Fubini’s theorem, w — fot f(s, Xs(w))ds is also
in ]:t~

First we have (s,w) — Xs(w) : {[0,t] ® Q; B([0,t]) ® Fi} — R? ® B(R?) is measurable. For the second part we need
to show for any B € B(R?), we have {Yr € B} N {T <t} € F. By Proposition 1.2.18, we know Yr,; is progressively
measurable. so

{YreB}nN{T <t} ={Yrar € B} N{T < t} € F;
O

Problem (1.2.21). Verify that the class Fr+ is indeed a o algebra with respect to which T is measurable, that it coincide with
{Ae F;An{T < t} € F;,Vt > 0}, and that if T is a stopping time (so that both Fr, Fr+ are defined), then Fr C Fr+.

Proof. Recall Fr+ consists of the sets A s.t. AN{T < t} € F;+, since F;+ itself is a o-algebra, hence N,cn A N{T <
t} = Nuen(An N{T < t}) € Fy+, and it is obvious that T € Fr+ for T is a optional.

Now suppose T is a stopping time, and let A € Fr, then AN{T < t} = ANU,—1{T <t— %} =Up=1 (A N{T <t-— %}) €
Fi C ]:t"' O

Problem (1.2.22). Verify that analogues of Lemma 2.15 & 2.16 holds if T and S are assumed to be optional and Fr, Fg and
Frps are replaced by Fr+, Fs+ and F(r,g)+, respectively. Prove that if S is an optional time and T is a positive stopping time
with S < T,and S < T on {S < oo}, then Fg+ C Fr.

Proof. Let A € Fg+ NTS that AN{S < T} € Fr+:
AN{S<TIN{T <t} =(An{S<t}n{T<t})N{TAt<SAt}
Now consider the last set

{Tat<saty= |J {TAt<rin{r<SAt}eFu
teQ+N0,4]

This also means Fpr+ C Fg+ if S > T.

Now need to show Fg+ N Fr+ = F(sar)+: (D) relation is obvious from ealier argument. Now let A € Fg+ N Fr+ =>
AN{SAT <t} =AN{S <t} N{T < t} € Fy+. I will not show the rest since they are pretty standard.

For the last part, let A € Fg+ so AN{S <t} € Fy+.

AN {T < t} = UreQ*ﬂ(O,t)Am {S <r<T< i’}
O

Problem (1.2.23). Show that if {Tu}uew is a sequence of optional times and T = infy>1 Ty, then Fr+ = Ly Fr. Besides, if
each Ty is a positive stopping time and T < T, on {T < oo}, then we have Fr+ = N>, Fr,.

Proof. By assumption, T is of course an optional time, since we have T < T,,, we also have Fp+ C ]:T,T foralln > 1,
hence it is also a subset of the intersections. Now suppose A € (,eNn Fr, SO

An{T, <t} e F+ VneN.
Conisder

An{T <t} =An [J{T. <t}
nelN
nelN

Now suppose T,’s are positive stopping times, then by Problem 1.2.22, we have Fr+ C (N FT,- Let A € Nyen FT,,
we have

An{T<t}=An J{Tu <t} e F
nelN



Problem (1.2.24). Given an optional time T of the filtration {F;}, consider the sequence {Ty },cN of random times given by

Tn(w){T(w); on {w: T( ) = oo}

x5 on {w: 51 < T(w) < 2’;

forn > 1,k > 1. Obviously T, > T,11 > T for every n > 1. Show that each T, is a stopping time, that lim, o Ty = T, and
that for every A € Fr+ we ahve AN{T, = 2%} € ]-"%,n,k > 1.
n42

Proof.

k k+1

{Tngt}—{T<max{ T <t}}eF

hence they are all stopping times. For each w € (), for all € > 0, there exists n > 1 such that zl,, < ewith Ty (w) — T(w) =
2% —T(w) < zl,, for some k > 1, hence we have the convergence. Now suppose A € Fr+, consider

k k—1

1.3 Continuous-Time Martingales
Problem (1.3.2). Let Ty, Ty, ... be a sequence of independent, exponential distributed random variables with parameter A > 0O:
P[T; € dt] = Ae Mdt, t>0

Let So = 0and S, = Y. 1 Tj;n > 1 ( We may think of Sy, as the time at which the n-th customer arrives in a queue, and of the
random variable T;,i € IN as the interarrival times.) Define a continuous-time, integer valued RCLL process

N =max{n >0;S, <t}; 0<t<o

(We may regard Ny as the number of customers who arrive up to time t.)
(i) Show that for 0 < s < t we have

P[Sn, 41 > t|FN] = exp(—A(t —s)), asIP

(Hint: Choose A € FN and a nonegative integer n. Show that there exists an eventA € o(Ty, ..., Ty) such that AN {N; = n} =
AN{Ns = n}, and use independence between T, 1 and the pair (S, 1) to establish

/ﬁﬁ{NS:n} IP[S, 1 > t|/FN)AP = exp(—A(t —s))P[AN{N;s = n}])

(ii) Show that for 0 < 's < t,N; — N; is a Poisson random variable with parameter A(t — s), independent of FN. (Hint: with
A€ ]:SN and n > 0 as before, use the result in (i) to estabilish

/ P[N; — N; < k| FN)dIP = P[A N {N. —n}]f;ex (At —s)) AE=9))
AN{N;=n} P =T - s = = P i
for every integer k > 0.)

Proof. (i) Use the hint and the solution, consider Ty(s) = “FN|{N; = n}”, recall that FN = o(N;0 < t < 5), so Ty(s)
is generated by the family of sets of the form

{Ns; <mnq,.., Ns, <np,Ns =n}; 0<s3 <. <5<

Similarly, consider St(s) = ¢(Ty, ..., Tu)|{N = n} which is generated by the sets of the form {T; < t1,..., T, < t,, N; =
n} where Y t <s, or

{81 <ty,., Sy <ty Ns=n} 0<t <..<t,<s.



Note that {N; > k} = {S; < t}, hence Tn(s) = St(s) since they have the same generating sets. Therefore, for all
A € FNN{N;s = n}, there exists A € o(Ty,.., T,) N {Ns = n} such that A = A. Now conisder

/~ P[S,.1 > t|FNJdP = P[S,,1 > tN AN {Ns = n}]
AN{Ns;=n}

Proof needs to be filled
= ]I)[Sn+Tn+] > tﬁAﬂSn s < Sn+1]

= P[S, >t—u,A, Sy, < s])»e_’\”du
t—s

— g Alt=s) / P[S, > s —u,A,S, <s|Ae Mdu
0

= e M9IP[S, + Typq > s > Sy, Al
= ef/\(tfs)]P[Ns =nn /ﬂ

Now sum over all #n’s to get the desired answer.
(ii) Use the hint:

/~ P[N; — N, < k| FNJdP = P[AN {N; = n} 0 N; — N; < k]
AN{N;=n}

=P[AN{Ns=n} NNt <k+n+1]

=P[AN{N; =n} N Synt1 > 1]
n+k+1

=P[AN{Ns =n}NS1+ ), Tj>1t] letZbe the summation
j=n+2

—PIAN{N: = n} NSy >t — Z]

PAN{Ns =n}NSy41 >t—ul]P[Z € du]

t—s

P[ANS, <s,5,41 >t—u|P[Z € du] + P[ANS, <5,5,41 >5,Z>t—5]

J

:/ P[ANS, <58,S,41 > 58,5541 >t —u|lP[Z € du
0
J

t—s
- /O P[A, Sy < 5,Spp1 > t — u]dP[Z € du] + P[A, {Ns = n}[P[Z > t — ]

k-1
Note that sume of exponential r.v.’s has gamma distributions, that is P[Z € du| = %Ae*/\” and

k=1 j
PlZ>0]=Y" (/\,?) e 0
=0 J

So the above is equal to
/Ot_s]P[A AN = 1}, Sps1 > t — uldP[Z € du) + P[A, {Ns = n}]P[Z > t — ]
:/Ot_s]P[A A {Ny = n}JP[Top1 >t — s — u]P[Z € du] + P[A, (N = n}]P[Z > t — §]
Then put everything together, we have the desired result. still a bit unsure about the last equality O

Problem (1.3.4). Prove that a compensated Poisson process { M;, Fi;t > 0} is a martingale.

Proof. lett > s and consider

E[M, — M| Fs] = E[N; — Ny + A(t — )| Fi]
—E[N;— Ni] —A(t—s) =0



Problem (1.3.7). let {X; = (Xt(l), ey Xt(d)) € R", F4;0 < t < oo} be a vector of martingales, and ¢ : RY - Ra convex function
with E[|¢(X¢)|] < oo forall t > 0. Show that {¢(X;) : F1;0 < t < oo} is a submartingale; In particular, { || X¢||; Fr;0 < t < oo}
is a submartingale.

Proof. Using Jessen’s Inequality, let s < ¢, we have
9(Xs) = ¢(E[X:|F5]) < Blo(X;)|Fs]

Proof from solution: Due to convexity, there exists a family {4, } such that ¢ = sup, hy, where h, are linear functions
sends R” — R. Therefore,

E[p(X:)|Fs] = E[ha(Xi)|Fs] = ha(Xs)  Va
hence E[¢(X;)|Fs] > ¢(Xs). O
Problem (1.3.9). Let N be a Poisson process with intensity A.

(a) For any ¢ > 0,

1
ImIP| sup (Ns — As) > cVAt] <
t—roo [ogs};t( ’ = I= V27

(b) For any ¢ > 0,

— 1
— [ ) < eVl <
HﬁhgyM ML-CAﬁ—W@T

2
4
SW<M0 < 4
o<t<tT t %

Hint: Use Stirling’s Approximation to show that im;_,e \/%IE[M At =L

(c) for 0 < o < T, we have

E

V2r
Proof. N — At, the compensated Poisson process is a Martingale, hence by the first submartingale inequality, we have
]E(Nt — t)\)+
P|sup (N; — As) > cVAt] < ——L 22
g (N A 2 M S TR
For large t we have
1 = (tA)" g n 1
——E[N; — At]t =t M)t Dy
it AT =VE L S G R
Cap LA
— Vivae AL
(L£A])!
~ e ()
~ Vivie @l
1
— ——— ast—> o

V2

Therefore, take the limit as t — oo on both side of the above inequality, we have the desired result.
(b) Using the second submartingale inequality and the stirling approximation result above, the proof is bassically

the same.
N 2
sup (t — /\)
o<t<t t

(©)
E
and by Jessen’s (N; — At) is a submartingale, hence by Doob’s Maximum Inequality we have

<E

1
sup (N — )\t)z‘| —
o<t<t o

E | sup (N; — At)?

o<t<t

< 4E[X2] = 4TA

The above two inequalities gives the desired result. O



Problem (1.3.11). Let {F,}  be a decreasing sequence of sub-o-fields of F (ie., Fyy1 C Fy C F,¥Yn > 1), and let
{Xn, Fu,1 < n < oo} be a Backward Submartingale; i.e., E[|X,|] < oo for all nand X,, € Fy, with E[X,,|Fy 1] > X471 a.s.
PP for all n. Show | = limy,_e B[Xy,] > —oo implies that the sequence { Xy} is uniformly integrable.

Proof. Note that ™ : x — max{x,0} is a convex function, then by Jessen’s Inequality, X, is also a backward submartin-
gale. Since E[|X;/|] < E[X]] for all n. By Markov’s Inequality we have AP[|X,| > A] = E[|X,|] = E[X,/] + E[X,] =
2E[X,f] — E[X,] < 2E[X]] — I < o0, s0 P[|X,| > A] — 0 as A goes to co. So consider

IE[X;HX?T»\] < lE[Xf'an+>A] = ]E[XT1|Xn|>/\]

which goes to zero as A — co.
Now let m < n and consider

0> X, = E[X,]— [ X
7/{X,,<—/\} " %] /{X,,Z—/\}

> _
> E[X,] /{ oy X

=E[X,] — E[Xn] +
{Xm<—A}

since lim,_, E[X;] converges, so we can take m large so that f (X[} X, <€, also, for all n > m, we have

e < / X < / X, <0
(Xn2on} (Xo<o)

so the negative part is also uniformly integrable. O

Problem (1.3.16). Let {X;; F;,0 < t < oo} be a right-continuous, nonnegative supermartingale; show X(w) = lim;_;e0 X¢(w)
exists for P-a.s. w € Q, and Xy, F;,0 < t < oo forms a supermartingale.

Proof. Note that —X; is a right-continuous submartingale with sup, E[X,"] = 0. Hence by Submartingale convergence,
we are done. O

Excercise (1.3.18). Suppose F; satisfies the usual conditions. Then every right-continuous, uniformly integrable supermartingales
{Xt, Fi,0 < t < oo} admits the Riesz decomposition Xy = My + Zy, a.s. P, as the sume of right continuous, uniformly integrable
martingale M and a potential Z.

Proof. By uniformly integrability and Mtg convergence theorem, there is a last element call X such that E[X;] >
E[Xw|F;]. Define A; £ X; — E[Xo|Fi] s0 Ay is a supermartingale that converges to zero a.s. and in L' (monotone),
hence it is a potential, and M; £ E[Xw|F;] is obviously a Mtg. Where right-continuous used in Mtg convergence
theorem, and usual condition used in defining X, since pointwise convergence fails only in a null set. O

Problem (1.3.19). The following three conditions are equivalent for nonnegative, right-continuous submartingale {Xy; F;0 <
t < oo}

1. it is uniformly integrable family of random variables;
2. it converges in L1, as t — oo;
3. it converges IP a.s. (as t — oo) to an integrable random variable Xoo, such that {Xy; F;,0 < t < co} is a submartingale.

Proof. (1) = (2): Uniformly integrability = IM > 0;sup E[|X;|] < M. Hence by Mtg convergence, we have almost sure
convergence, call the convergent element X. Fatou’s lemma to get im E[X;] = liminf; ;o E[X] > E[liminf; 0 X;¢] =
E[lim¢_c Xt} = E[Xo]. However, E[X;] is increasing in t, so we have L! convergence.

(2) = (3): Convergence in L' implies convergence in probability. Now, let s > 0 and A € F, then [, XeodP =
lim; e [, X¢dIP < [, XsdIP. Hence it is sub Mtg with last element.

(3) = (1): Y £ E[Xw|F:] > X;, and since positive, E[Xilix,51] < E[Y1ix,53). Now note that AP[X; > A] <
E[X;] < E[Xw] so sup, P[X; > A] = 0as A — 0. O

Problem (1.3.20). The following four conditions are equivalent for a right-continuous martingale {Xy; F;0 < t < oo}:
® (1),(2) as previous problem.

* (3) it converges P a.s. (as t — o) to an integrable random variable Xeo, such that {Xy; Fi;0 < t < oo} is a martingale.



® (4) there exists a integrable random variable Y such that Xy = E[Y|F¢| a.s. P, forall t > 0.
Besides, if (4) holds and X« is the random variable in (3), then
E[Y|Feo] = Xeo  as. P

Proof. Note that (1) to (2) to (3) is shown in the previous problem since we did not use positivity for those implications,
also, ” < ” case is due to the similar properties of super Mtg’s. For (3) to (4), set Xeo = Y. For (4) to (1), | - |[R — R*
is convex function, then by Proposition 3.6 or just Jessen’s Inequality, |E[Y|F}]| is a sub Mtg and expectation achieves
maximum at ¢t = 0, hence it is uniformly integrable.

The beside part is easily seen. O

Problem (1.3.21). Let {Nj; F;0 < t < oo} be a Poisson process with parameter A > 0. For u € C and i = /1, define the
process

Xy =exp {z’uNt — At(e™ — 1)}

(i) Show that R(X;) and I (X¢) are martingales.
(ii) Consider X with u = —i. Does this martingale satisfy the equivalent conditions of problem 3.20?

Proof. (i) Let s < t, and note we don’t have to check real and imaginary parts seperately,
E[X; — X;| 7] = E[X; (exp {iu(N: = Ny) = A(t=s)(e" = 1) } —1) | 7]
= XS]E[(exp {iu(Nt — No) — A(t—s) (e — 1)} - 1)]
where the last equality is by independence. N; — N; is a Poisson random variable with parameter A(t —s). By looking
up the character function of Poisson random variable, we found the expectation is zero, hence a martingale.
(ii) Let u = —i, then
Xy =exp{Nt—At(e—1)}

and it is distributed as follows

P[X; =exp{n—Atle—1)}] = (}:')”e_M

So, if we were to take 1;x, k), it is enough to consider the expectation on {N; > K}, so consider

2 (eAt)™ _
E[Xi1n>k] = ) ( n,) e e

n=k

each summant is less than 1, so by bounded convergence theorem, take k — oo it converges to zero, so it does satisfy
the equivalent conditions of the previous problem. O

1.3.C Optional Sample Theorem

Problem (1.3.32). Establish the optional sampling theorem fro a right-continuous submartingale {Xy; F1;0 < t < oo} and
optional times S < T under either of the following two conditions:

o T is a bounded stopping time (there exists a number a > 0 such that T < a);
e there exists an integrable random variable Y, such that X; < E[Y|F] a.s. P, for every t > 0.

Proof. (i) Leta > T(w) for all w, then Y; = Xipq, Ft,0 < t < o0 is a submartingale with last element X,. So by Theorem
1.3.22 we have E[X1|Fs+| = E[Y1|Fs+] > Y5 = Xs.
(ii) This is the definition of sub Mtg with last element, so use Theorem 1.3.22 directly. O

Problem (1.3.24). Suppose thath {X; F;0 < t < oo} is a right-continuous sub Mtg and S < T are stopping times of F;. Then
* {Xrpp Fr;0 <t < oo} isasub-Mtg;
o E[Xrpt|Fs] > Xgnr a.s. P, for every t > 0.



Proof. (i) Lets < t,and t AT and s A T are bounded stopping times. Optional stopping theorem tells us E[Xt1¢|Frps) >
XTps-

E[X1at| Fs] = E[lir<gy Xrat|Fs] + E[Li1s6) XAt F5]
= E[Lir<g Xras|Fs| + E[1{756) Xt | Fs]
> E[lyr<sy X1as|Fs] + Lirssy Xs

To justify the third inequality, let A € F;, then AN{T > s} € Fs N Fr

E[1gn(rs51 Xtae] = E[E[1 o550 XTAt| Fsnr]] 2 E[Lon r55) XTAs]

The second equality is because X1,s € Frps C Fs by Proposition 1.2.18.
(ii) Note {T < s} € Fs.

E[XTat|Fs] = E[ls<iXTat| Fs] + E[1ss ¢ X7at| Fs]
= E[ls<y Xrat| Fs] + E[Lisp Xsat|Fs]

note E[11g 1y Xsat|Fs] = Lysoy E[Xs|Fs] = 1554y Xs. And E[Lis<y X7ne| Fs] = 1is<sy Xsn: to justify this, let A € Fg,
then AN{S <t} € Fgprsince AN{S <t} € Frand A,{S <t} € Fs and Fs N F; = Fspt, and consider the following
integral

/A Lis<n XratdP = E[E[1 gnrs<y XTat| Fsnt]]l = E[langs<p Xsatl

True for all A € Fs, hence we have desired inequality. O
Problem (1.3.25). A sub Mtg of constant expectation for all t > 0 is a Mtg.
Proof.

and E[X;|Fs] > Xs, so we must have equality almost everywhere. O

Problem (1.3.26). A right-continous process X = {X;, F¢,0 < t < oo} with E[|X¢|] < oo for all t > 0 is a submartingale if and
only if for every pair S < T of bounded stopping times of the filtration F; we have

E[Xr] > E[X;]
Proof. Why isn’t this obvious? O

Problem (1.3.27). Let T be a bounded stopping time of the filtration JFy, which satisfies the usual conditions, and define F =
Frit. Then Fy also satifies the usual conditions.
(i) IfX {Xt, ]-'t,O <t < oo} is right-continuous submartingale, then so is X = {Xt Xrys— X7, Ft,0 <t < oo}

(ii) IfX = {Xt, .7-],0 <t < oo} is a right continous submartingale with Xo =0a.s. P, then X = {}?thvo; F1;0 <t <oo}is
also a submartingale.

Proof. (i) There is no doubt about adaptivity. Let s < t and consider
E[Xrt — X[ Fris] = E[X7p| Fris] — X7 > Xpys — X7
by Optional Sampling.

(i) Problem with this question: F;_r not formally defined in the previous text.
Xy = X(t T)vo a.s. IP. For adaptivity, A € Fi = Fryp <= AN{T +t < s} € Fs, and we know {X; € A} € F; =
Fip7 forany A € B(R"), thatis {X; € A} N {T +t <s} € F; forall s > 0.

Xy = X(t—T)vO = X(t_T)v0(1t<T +1i>1) = Xolper + Xi—rlio7
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That means if A € B(R"), then

{X; € A} = {XolieT + Xi_1lis7 € A}
= {Xolyer € AYU{X; 11zt € A}

where the first term is cerntainly in F;. {1;>7} € F; O

Problem (1.3.28). Let Z = {Z;, F;,0 < t < oo} be a continuous nonnegative martingale with Ze, = lim¢_ye0 Zt = 0 a.s. P.
Show that for every s > 0,b > 0 we have

1. P [sup,., Zt > b|Fs] = %ZS, a.s. on {Zs < b}.
2 P [supy., Zt > b| = P[Z; > b] + {E[Z:17,)

Proof. (1) Let B = {Zs; < b} and let T £ inf;{t > s : Z; = b}, then Z;,r is a martingale, and by one version of optional
sampling, for all A € F; we have

/ Z.dP = / ZyppdP
ANB ANB

- / 1,2 7bdP + / 1,1Z,dP
JANB T ANB
Now note the second term is monotone in ¢, so send t — oo to get

ZsdlP = bP[AN{Zs < b} N{T < oo}]
ANB

since this is true for all A € F;, then we are done.
(2) follows directly from (1). O

Problem (1.3.29). let {X;, F+,0 < t < oo} be a continuous, nonnegative super martingale and T = inf{t > 0; X; = 0}. Show
that

Xryp =0, 0<t<oo holdsas. on{T < oo}

Proof. Note that {X;} is uniformly integrable, hence it has a last element, also note that optional sampling theorem
applies to —X; since it is a submartingale.

0> —E[lr<coXr4t] = —E[E[X71¢|FT|1T<00] > —E[X71lT00] =0
and the result is given by positivity. O
Problem (1.5.7). Show < -,- > is a bilinear form of My, i.e. for any members X,Y,Z € My and real number «, B, we have
1. <aX+BY,Z>=a< X, Z>+B<Y,Z>,
2. <X, Y>=<Y,X>
3. [ <X, Y>]P<<X><Y >
4. For P-ae. w € Q)

~ ~

Gt(w) = Gs(w) <

KX > (w)— <X > (W)+ <Y > (w)— <Y > (w)] 0<s<t<oo

N =

where & denote the total variation of & 2< X,Y > on [0,t].

Proof. (1) aXZ 4+ BYZ— < aX + BY,Z > is a martingale, and aXZ + BYZ —a < X,Z > —B < Y,Z > is also an
martinagle, and by the uniqueness of the cross variation, they are equal.

(2) Since multiplication in M? is commutative.
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(3)
0<<X=AY > =< X+AY, X —AY >
=< X>4A <Y > 22 <X, Y >

Assume WLOG that < Y >;> 0 for t > 0, since if < Y >/ is zero, for t € [0, T] for some T, Then E[Y?] = E[< Y >;] =0,
since Y2 > 0, then Y is identically zero on the interval [0, T], hence both quadratic and cross variations are zeros, so

equality holds. With that cleared, let A = <%= then the above is

<X Y>* <X Y>?
<Y > <Y >

0<<X>+

Multiply both sides by < Y >, then we are done.
@) & =Yl <X,Y > — <X, Y > | Note the following

1
|<XIY>t,,+1_<X/Y>tn‘:Z|<X+Y>tn+1 —<X+Y >, —<X=Y> < X=Y >y |

1
gZ[At”<X+Y>+Atn<X—Y>]

1
=§(<X>t

sum them up to get the desired inequality. O

— <Y >)

n+1 n+1

1
—<X>tn)+§(<Y>t

Problem (1.5.11). Let {Xs; F;,0 < t < oo} be a continuous process with the property that for each fixed t > 0 and for some
p>0,

HrlIiHIiO Vt(p) =Ly (in probability)

where Ly is a random variable taking values in RY a.s. Show that for q > p, Limy g0 Vt(q) (IT) = 0 in probability, and for
0 < g < p, the limit is infinite on the event {L; > 0}.

Proof.
n
VEO(IL) = m(X)TP Y | Xy,,y — Xp,|P
k=1

where m; (X, IT) = sup{|X; — Xs| : 0 < t,5s <t,|s —t| < |[I1]|}, by uniformly continuity, this thing goes to zero a.s. Now
the problem becomes obvious. O

Problem (1.5.12). Let X € MS, and T is a topping time of {F}. If < X >7= 0, a.s. P, then we have P[X7p; = 0,0 < t <
co] = 1.

Proof. X? +— < X >t is a continuous martingale by one of the optional sample theorems, and since < X > is an
increasing and continuous, hence

P[< X >ppr=0;Y0 <t <oo] = Y P[<X>,r=0]=0
reQt

Problem (1.5.14). Show that for X,Y € M$ and I1 a partition of [0, 5],

m

lim 2 (Xt — Xt )Yy, =Yy, ) =< X, Y >; in probability
1) —042

Proof. Only thing we have to consider now is their difference:

2
m

Z(th - th—l)(Ytk - Ytk—l)_ <X Y >y
k=1

E

m
= Z E {(th — thfl)z(Ytk — Ytk71)2 — Z(th — th—l)(ytk — Ytk—l)(< X, Y > — < X, Y >tk—1) + (< XY >y — < X, Y >tk71)2}
k=1
+IE[ Z (th — th—l)(Ytk — Ytk—l) — (< X,Y >tk — < XY >tk—l))((th — th—l)(Ytl — Ytl—l) — (< X,Y >t1 — < XY >t171))
1<k#I<m
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use conditional expectation we see that the second term is zero. Assume for now Y, X be bounded by K, and consider
the first sum, all terms goes to zero by versions of Holder’s inequality and bounded convergence theorem. If X, Y are
not bounded, then using T, = {max{|X¢|, |Y:|} > n} and localization. O

Problem (1.5.17). Let X,Y € MO, Then there is a unique (up to indistinguishability) adapted, continuous process of bounded
variation < X,Y > satisfiying < X,Y >9= 0a.s. P, such that XY— < X,Y >¢€ Medec, IfX =Y, wewrite < X >=<
X,Y >, and this process is nondecreasing.

Proof. By definition, there exists an nondecreasing sequence of stopping times such that T, — co a.s. IP such that
XinT,, YinT, are Mtg’s. So denote < X, Y >§n) be the cross variation of Xt(n)Yt(n) = (XY)¢aT,, meaning (XY)ia1,— <

XY >§") is a martingale.

Now note that (XY )11, ,— < X, Y >£7\)Tn_1: (XY)inr, ,— <X, Y >£n_1) a.s. IP by uniqueness of cross-variation.
So< X,Y >'f71:< X,Y >/ on{t <T, 1}, sodefine < X,Y > (w) L2oXY >En) for T, > t a.s. and it is an increasing
process. O

Problem. 1.5.19

1. A local martingale of class DL is a martinagle.

2. A nonnegative local martingale is a super-martingale.
3. If M € M%1°¢ and S is a stopping time of Fy, then E(M2) < E < M >g, where M2, = liminf; .o MZ.

Proof. (1) Suppose X is a local mtg of class DL, meaning for family £, and T € L,(P[T < a] = 1 for some fixed number
a > 0),{Xr}rer, is uniformly integrable. First of all, there exists {Ty },en where P[T, — o] = 1 such that Xt ,; is
a martingale for all n. Now, choose any S < T bounded sotpping times, they are in some class £, for some a. So by
optional sampling theorem, E[X11,] = E[XsAT,], now take n large so a < T, a.s. P, so we have E[X7] = E[Xs] for all
S < T, and same in reverse order, so by problem 1.3.26, X is a martinagle.

(2) Since nonnegative, we can use Fatou’s Lemma: Let S be a bounded stopping time of F}, then by Fatou’s Lemma
we have E[liminf X;7,rs|Fs] < liminf X;51, 4s. Now, since T, increases to co almost surely, lim inf; .o Xia1,A5 = Xins
a.s. [P, solett > S, and by Problem 1.3.26 again, we are done.

(3) So far we have ]E[M%ATn] = E[< X >t,] for all n and ¢, and ]E[M%/\THAS] = E[< X >¢a7,15)- Now, take liminf
and use Fatou’s lemma again to get

]E[lirgiantz/\Tn/\s] < liminfE[< X >\, 5]

Note that < X >;,1, is nondecreasing both in t and 7 since T}, is increasing. So by Monotone convergence theorem,
we can move the liminf inside of the expectation, and since T}, eventually increases to infinity, we have

]E[th/\s] < E[< X >4p5]

now use Fatou’s lemma and the fact that the quadratic variation of a local martingale is nondecreasing and monoton
convergence theorem again

]E[li{nianfAS] < E[< X >¢]

— 00

Then the conclusion holds true on the set {S < oo}, and taking into account that M2, exists (in the sense of lim inf),
then we are done. O
Excercise (1.5.20). Suppose X € M, has stationary, independent increments. Then < X >y= t(EX?).

Proof. Say t < 0, then th— < X >; is a mtg starting with zero. Also we have X; — X; ~ X;_ for t > s, and
Xi—Xs L Xy, —Xpforv<u<s<t

E[X? — X2 — (t - s)EX2| ] = E[(X; — Xs)2] — (t — $)EX}
—E[X2 ] - (t-5)EX]

Now, let f(t) = E[X?], then we have f(t —s) = f(t) — f(s), the only solution to this equation is f(x) = cx, where
c = f(1) (I actually did not know this). O
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Excercise (1.5.21). Employ the localization technique used in the solution of problem 5.17 to establish the following extension of
problem 5.12: If X € M and for some stopping time T of F; we have < X >7= 0a.s. P, then P[Xr,; = 0;¥0 < t < o0] = 1.
In particular, every X € M of bounded first variation is identically equal to zero.

Proof. We have X;,1, is a martinagle for all T}, stopping time F; and T, T o a.s., then we’d have < X >t ,7= 0 since
< X > is nondecreasing, so X;,T, is identically zero for all n € IN, so take n — cc. O

Problem (1.5.24). Let M € Mo U M and assume that its quadratic variation process < M > is integrable: B < M > < oo.
Then

1. M is a martinagle, and M and the submartingale M? are both uniformly integrable; in particular, Moo = lim;_,co M exists
as. P, and E[M2] =E < M >c.

2. We may take a right-continuous modification of Zy = E[M2,|F] — M?;t > 0, whic is a potential.

Proof. (1) Assume M € M/, we have from problem 1.5.19 that E[M2] < E[< M >g]leE[< X > for all stopping
time of F;, that includes the case S = t for t € R™, then by Durrett, 2019, {Ms}sc, is uniformly integrable, hence of
class DL, and by Problem 1.5.19 (i), it is a martinagle.

Now by the uniform integrability of M, we know that M; — M for some My integrable and in L?

E[lim M?] < lim E[M?] < E[< M >
t—o0 t—ro0
so we have L! convergence of nonnegative submartingale, so by one of the mtg convergence theorem, M? is also
uniformly integrable, moreover, M2, is its last element. So Z; > 0 a.s. IP, and E[Z] = lE[MgO — Mﬂ —0ast—oco0. O
Problem (1.5.25). let M € M1 and show that for any stopping time T of F;,

IE[(S/\ <M >T]

2 +P[< M >7> 6]

]P{ max |M|; > e} <
0<t<T

Ve, & > 0. In particular, for a sequence { M },cny C M we have

< M(n) >r—p0 — max |M§n)| —p 0
0<t<T

Proof. By 1.5.19 (ii) we have E[M?] < E[< M >r1| holds for any bounded stopping time T of ;. The n by Remark
1.4.17 we have the desired conclusion. O

Problem (1.5.26). Let M, N € M with F; and H; as filtrations respectively, and suppose Foo | Heo. With Gy = Ao (F; U
H:) show that M, N, MN are all local martinagles with repsect to G.

2. Brownian Motion

Problem (2.1.4). Let X be a stochastic process for which Xo, X¢, — X4, ..., Xt, — Xy, , are indepdnent random variables, for every
integer n > 1 and partition {t;}1<;<n of the real line. Show that for any fixed 0 < s < t < oo, the increment Xy — X is
independent of FX.

Proof. 011, = 0(Xt,, ..., Xt,) = 0(Xt, — X4y, Xt, — X1, ,), and they are all subset of the collection of the set that is
independent of X; — Xj, call it D, which is a Dynkin’s system, and call the collection of all 017, G, then G C D, and by
the Dynkin’s system theorem, we are done. O

2.4 The Space C[0, ), Weak Convergence, and the Wiener Measure

Define

max ([|ws (f) —wa(B) A1)

The metric on the space C|0, o)

Problem (2.4.1). Show that p above is a metric on C[0,00) and under p, the space is complete and seperable metric space.
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Proof. Metric: Obvious. Suppose f;, — f in p, that is
1
i max (|fu(t) = f(E)| A1) =0

n
nelN 2 1<t<n

so each maxj<¢<y (|fu(t) — f(t)|) — 0. Suppose x € [0,00), then 0 < x < n for some n, then we have uniformly
convergence on [0, ] of f, to f, hence f continous at x. O

Problem (2.4.2). Let G(Gy) be collection of finite-dimensional cylinder sets of the for
C={weCl0,): (w(tr),..w(ty)) e A} n>1A¢€ B(R")

where, forall i =1,...,n,t; € [0,00)(respectively, t; € [0, t]). Denote by G(Gy) the smallest o-field containing G(G;).
Show that G = B(C[0,00)), the borel o-field generated by the open sets in C[0,c0), and that G; = ¢, ' (B(C[0,00)) &
B:(C[0,0)), where ¢ : C[0,00) — C[0, 00) is the mapping ¢:(w)(s) = w(t As) for 0 <'s < co.

Proof. 1 guess open sets are defined by the metric p. Note that G is generated by H = {w € C : w(t) € A} where
t € R and A € B(R), or we can even take A to be open. For all w € H, H contians Be¢(w) with € small enough, so
G C B(C[0,00)), so H is open in p. Since we working with continuous functions, the summants in p can be taken to be
the sup of rationals, so we have the other direction.

For the second part: Let C be a cylinder set

¢;1(C) = {w € C([0,00)) : (p(w)(t))1<i<n € A}
={w € C([0,00)) : (w(t; At))1<icn € A} € Gt

If C € 0(Gt), we can take it to be {w € C[0,00) : (w(t;))1<i<n € A} where t; € [0,t] for all i and A € B(IR"), then
C={weC[0,0): (pw(tj))i<i<n € A} € B(C[0,0)). O

Problem (2.4.5). Suppoose { X, }neN is a sequence of random variables taking values in a metric space (S1,p1) and converging
in distribution to X and suppose (Sy, p2) is another metric space, and ¢ : S; — Sy is continous. Show that Y, = ¢(X,) converges
in distributiion to Y = ¢(X).

Proof. Let f be a continous function on Sy, and consider
E[f(¢(Xn))] = E[f 0 ¢(Xn)] = E[f 0 ¢(X)]
by definition. O

Def. Let 11 be a family of probability measure, it is relatively compact if every sequence of elements of 11 contains a weakly
convergent subsequence. It is tight if for every € > 0, there exists compact set K C S such that P[K] > 1 —€ forall P € IL

tight is similar to equicontinuous

Theorem (Prohorov). Let I1 be a family of probability measures on a complete seperable metric space S. 11 is relatively compact
if and only if it is tight.

Def. If w € C[0,00) and § > 0, we define modulus of continuity on [0, T|] as

T A
m' (w,d) = max w(s) — w(t
(w,0) ‘s_ﬂd;oés/tgl (s) —w(t)|

Problem (2.4.8). Show that m™ (w, &) is continous in w € C[0,00) under the metric p as abov, is nondecreasing in 6, and
limg o mT (w, 8) = 0 for each w € C[0, o).
Proof. First for continuity: Let
1
lim p(wy,w) =0<= lim ) — (max |wn () —w(t)| A 1) =0

n
n—00 n_>001§k<oo 2 0<t<k

In particular, w, — w uniformly on [0, T]. So consider

|mT(w,5) — mT(wn,(S)| = max lw(s) —w(t)] — max |wn (s) — wy (1)]
[s—t|<8,0<s,t<T |[s—t|<6;0<st<T

< max lw(s) — w(t) — wn(s) + wn(t)]
[s—t|<8,0<s,t<T

It goes to zero by triangular inequality and relaxing the restriction for which we are taking maximum of.
The second assersion is true due to uniform continuity. O
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Theorem (Arzala-Ascoli). A set A C C|0, o) has compact closure if and only if the following two condition holds:
sup |w(0)| <co
weA
liminf sup m” (w,8) =0  for every T > 0
HO - wea

Problem (2.4.11). Let {X("™},,ciy be a sequence of continuous stochastic processes X(™) = {Xt(m);O <t <oo}ono (Q,F,P),
satisfying the following conditions

o sup,oq B [X{"| AM < oo

* sup,- E ‘Xt(m) — Xs(m)‘a < Cr|t—s|Ptl, VT >0and0<st<T

for some positive constant w, B, v universally and Cr depending on T > 0.
Show that the probability measure P, = P(X™)~1;m > 1 induced by these processes on (C[0, 00), B(C[0, 0))) form a tight
sequerices.

Proof.

Ex"™pr M
]P[|X(()m)| > A < /\701/ < W uniformly
so taking sup and take A — co this thing converges to zero, which verifies condition (4.6) of Theorem 4.10 since
]PHX(()m)| > Al = Py (Jw(0)| > A) since we are assuming those are coordinate mapping processes.

Now let mT (w,d) £ max|;_g|<50<s <7 |W(8) — w(t)]. Again by Chebyshev we have

E {|x% ~ X H
2 < E;aCTZf(nﬁjLn)

— > <
P ['X%n Xl > 6"} = =
Solet D, = {re[0,1]:r = ZL,, for some k and n}, then U,>1 D, would be the set of dyadic rationals dense in [0, 1], let
D, = Uk>n Dx. Also let €, = 27" and get,

Xk — Xin

on 21

2!

r < max
1<k<2n

>en>:1P< U ‘XL—Xkil >en>
k> 2 2

27[
< IP(’X — Xenl| > )
_kzzl an k;TI €n

< €;“CT2771‘B

Note that those forms a summable series, so by Borel-Cantelli, we have

H’(ﬂUmax >en>:0
n>1 k2n1§z§2k

That is, for all § > 0, there eixsts n > 1 such that ]
P | (J max >e, | =P max _ |X;—Xs| | <o
k>n 1<i<2k |[s—t|<eg;s,t€Dy

where in the proof we use X to denote arbitrary X("), and since we can take sup on each probability measure, so we
are done. O

Xi —Xin
ok

2k

X

i — Xin
2k 2ok

Problem (2.4.12). Suppose {IP,}ncN is a sequence of probability measures on (C[0,00), B(C[0,00))) which converges weakly
to a probability measurable IP. Suppose, in addition, that { f,},eN is a uniformly bounded sequence of real valued continuous
function on C|0, 00) converging to a continuous function f, the convergence being uniform on compact subsets of C[0,00). Then

lim fn(w)dPy(w) = lim f(w)dP(w)

n—oo C[0,00) n—oo C[0,00)
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Proof. Let By, be the closed ball of radius n € IN in C[0, o0), then Ve > 0, 3N > 1 such that P(B5) < € for all n > N.

/C[o»x» JudPn = /C[o o dlp‘
=\ [ o= [ ot [ g [ gar)

/C[O,oo) fndlP = /C[O,oo) f"d]P‘ + /c[o,oo) fudP = /c[o,oo) fd]P‘

IN

Now doubt the second term goes to zero, now look at the first one

P - /C fnle’

U it o 2

<M / , d]Pn—/ P, ’/ len—/ : d]P’
€+‘ C[Om)f Px C[O’oo)f(l’k + C[Olw)fqvk C[()m)f Pk

where 0 < @ < 1 takes value 1 on By and zero on Bi(1 + ¢) for some small § given by Urysoln’s Lemma and M be
the uniform bound of f;; and as well as f. Then clearly second term goes to zero. Now look at the first term. Since we
have locally uniform convergence, let 1 so large that [|f, — f||=(p,) < 2-N, then the integral would be less than 2N
as well, so it converges to zero. O

2.5. The Markov Property

Problem (2.5.2). Show that for each F € B (C|0, o0]), the mapping x — P*(F) is B(R")\B([0, 1])-measurable.(Hint: Dynkin
System)

Proof. Observations: Let D = {A € B(C[0,0)) for which the map x + P*(A) is B(R")\B([0,1]) measurable}.
Suppose A,b € D and A C B, then x — P*(B) — P*(A) = P*(B— A) is B(R")\B([0,1]) measurable, same for an
increasing sequence A,. So D is a Dynkin’s system. Now we only need to show that the generating sets of B (C|0, o))
is in D. So by Problem 2.4.2, we only need to show this for A’{w € C[0,00) : w(t) € A} for arbitrary t > 0. So

2

n 2t2 ac

x»—>P0({w€A+x})—/A+x\/217e 2w 4 = /\/7

turns out to be a continous function, so measurable. O

Problem (2.5.4(3)). The coordinate mapping process B = { By, BtB;t > 0} oon (C[O,oo)d, B (C[O,oo)d) ,]PP‘) is a d-dim Brow-
nian Motion with intial distributed p.

Proof. 1t is definitely adapted and continous.
P* (By € T) = /d]Px(l")y(dx)
= oo PO = X)p(dx)
- / X (x)p(dx) = (T)

and By — B; when s < t is a Gassian vector in RY, so it is a Brownian motion with initial distribution U O

Problem. 2.5.5 Let {Bt = (Bi)1<j<4, 1,0 < t < co} be a d-dim Brownian Motion. Show that the process

mP 2B Bl F; 0<t<eo1<i<d

are continous, square integrable martingales, with < MU, MU) >,;= téyj. Furthermore, the vector of martinagles M =
(MW), iy is indepdnent of Fy.

17



Obvious

Def (2.5.6). Let (S, p) bea metric space, we denote by B(S)" the complition of the Borel o field(generated by the open sets) with
respect to the finite measure y on the metric space. The universal o-field is U(S) = Ny B(S)!, where the intersection is over

all finite measures, or equivalently, all probability measures, u. A U(S)/B(R)-measurable, real valued function is said to be
universally measurable.

Problem (2.5.7). Let (S,p) be a metriic space and let f be a real-valued function defined on S. Show that f is universally
measurable if and only if for every finite measurable y on (S, B(S)), there is a borel measurable function g, : S — R such that

u{xeS: flx) # g(x)} =0,

Proof. (=): Suppose f is universally measurable, then f~!(B) C BF for all probability measures y. Pick any y, by the
nature of the complition of ¢ field, there exists g, that agrees with f almost everywhere.

(<): we have that ],t(f_l(B)Angl(B)) =0 for all B C B(R), so f~}(B) € B(S)*. O

2.5 B. Markov Processes and Markov Families

Problem (2.5.9). make the preceding discussion rigorous by proving the following result:
If X, Y are d-dim random vectors on (Q), F,P), G is s sub-o-field of 7, X L G and Y € G, then for eveyr I’ € B(]Rd)”

P[X+Y €Tl|G] =P[X+YeT|Y], asIP;
P[X+YeT|Y=y]=P[X+ycT], forPY laeycR?

Proof. (a) In this case, we only have to show that P[X +Y € T|G] = E[lx;yer|G] € o(Y). Let D = A x B where
A,B € B(R"). Then

P[(X,Y) € D|G] = E[1{xca}l{ven}|G] = Lixeay E[l{yveay]

Also we have 0({A x B : A,B € B(R")}) = ¢(R? x RY). Now let D = {(x,y) : x +y € T} € B(R? x R?). Similar
proof for the second one. O

3.2 Construction of Stochastic Integral

Problem (2.12). Let W be a standard one dim B-M, and let T be a stopping time of F; of the BM with E[T| < 0. Prove the Wald
Identities

E[Wr] =0; E[W?3] = E[T]

Proof. Note that we must have T < oo a.s. IP, so we have Wi,r(w) — Wr(w) a.s. pointwise (or this can be obtained
from Submartingale Convergence Theorem), also W7 ;(w) — W2(w) a.s. From Problem 1.3.24(a) we know that W2, ;.
is a submartingale with respect to the same filtration. Then perhaps we can show it is uniformly integrable. So consider

E[Xjy,.., 1>k Wral]* < P[[Wrae| > KJE[WF,]
= IP[|[Wrn| > K]E[t A Tq]
= P[|Wrn¢| > K]E[T]

E[WZ,,]
< ]E[T} Kg/\t
1
=< E[T}Zﬁ
So, imk 0 SUP;> E[Lwyy,,| [Wratl] = 0. So Wr is uniformly integrable, hence by one of the martingale convergence
theorem, IE[W7] = 0. O

Excercise (3.2.13). Let W be as in previous problem, let b € R, and let T}, be the passage time to b, that is Tj, = infy>o{W; = b}.
Use the provious problem to show that for b # 0, we have ET}, = oo.

Proof. E[Wr,] = E[b] = b # 0, so the assumption of Problem 2.12 must not hold, which is E[T] < 0 O
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Problem (3.2.18). Let M = {M;, F;0 < t < oo} and N} = {N;, Fi,t € [0,00)} be in MS and suppose X € L(M)%
and Y € L(N)%,. Show that the martingales IM(X), IN(Y) are uniformly integrable and have last elements IX(X), IX(Y), the
corss-variation < IM(X), IN(Y) > converges alsmost surely as t — oo and

E[IMX)IN(Y)] = E[< IM(X),IN(Y) >o] = E /OOO XiYid < M,N >,

In particular,

o 2 [ee]
]E(/ Xtht) :]E/ X2d < M >
0 0

Proof. By definition we have
AéIE/ X2d < M >1< oo Béuz/ Y2d < N >1< oo
0 0
For uniformly integrability, we consider

E 10000 )] < P (1210)] > K) - E[ ()
< (M ()P

1 t
:ﬁ]E/OXZd<M>t

1 I 2 A2
<—(E|] X*d<M =
S ( /0 < >t> K

which goes to zero as K — oo, so uniformly integrable. So by Problem 1.3.20, it converges both in L! and IP — a.s. to
some I} (X) which can be viewed as the last element, and same for [ Ny).
Now, for t € R™, let & be the total variation of < M, N >;, we have

t
< 1M(), IN(Y) > = ‘/ XoYed < M,N >5| P —as.
0

t 2
S/O |XsYs‘d§t

t LV 3
<</0 X§d<M>S) (/o Ys2d<N>s)

t t

310{/ x§d<M>S+/ Yszd<N>s]
0 0

< 10A + 10B

which is integrable. Now, apply Proposition 2.4 to X;1;>7 and same for Y, we have

T+t % T+t 2
<( X§d<M>s> (/ Y§d<N>s>
T T

which goes to zero as T — oo for any ¢ > 0, so we have fot XsYsd < M, N > converges pointwise a.s. [P, and it is
bounded by 10(A + B) and we have

t+T
’ XsYsd < M, N >,

t
: M N —1; M N _1;
}L%E[It (X)IN(Y)s] = tlgglE[< I(X), IV(Y) > = tll>n01o A XsYsd < M,N >
by DCT we can move the limit inside the integral. For the last equality, replace IN(Y) by IM(X). O

Problem (3.3.10). With {Z;;0 < t < oo} as in Example 3.3.9, set Y = Z%' 0 < t < oo, which is well defined because
Plinf;<;<T Zt > 0] = Plinfo<;<7 & > —oo] = 1. Show that Y satisfies the stochastic differential equation

dY; = Ytthdt Y X dW, Yp=1
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Proof. Yi = exp (— fot XsdW; + % fot stds) and we call &; = fot XsdWs + % fot X?2dt. Use Ito’s formula

t 1 ot 1 ft
Yt:YO—/O stgt+§/0 st<§>5+§/0 Y, X2ds

t t
:YO—/ YsXdeer/ Y, X2ds
0 0

Problem (3.3.12). Suppose we have two continuous semimartingales
Xe=Xo+Mi+By Yi=Yo+Ne+GC

where M,N € M/ and B,C are adapted, continuous processes of bounded variation with By = Cy = 0 a.s.. Prove the
Integration by Parts Formula

ot t
/ XodYs = XiYi — XoYo f/ YedXs— < M,N >
0 0
Proof. Here we apply Theorem 3.3.6 to f(f,x,y) = x - y. So we have
t t t t t
XiY: = f(t,X;) :XOYO+/ YSdBt—l—/ XstH—/ stNs—i—/ XodM; +2 x %/ 1d < M, N >,
0 0 0 0 0

t t
_ XOYO+/O Y.dX. +/0 XdYot < M,N >

3.3 B. Martingale Characterization of Brownian Motion

3.3. C Bessel Processes, Questions of Recurrence
Problem (3.3.20). Show that for each d > 2, the Bessel family with dimension d is a strong Markov family.

Proof. Compare to Definition 2.6.3, (a) and (b) are included in IP*. The rest is fairly obvious due to the connection
between P and . O

3.3.D Martingale Moment Inequalities
Excercise (3.3.25). With W be a standard one dim BM and X be measurable adapted process satisfying

T
115[/0 1, [2")dt < oo

for some real number T > 0 and m > 1, show that

2m

T T
E ‘/ XdW,| < (m(2m—1))’”T’”’l]E/ X, 2" dt
0 0

Proof. Let My = fot XsdW; which is a continuous Mtg, and f(t,x) = 2™ then by Ito’s we have
t t
EM?" = E ( / 2mMZ" X dWs + m(2m — 1) / Mf’”—zxzdt>
JO 0
t
—E (m(Zm _1) / Mgmzxgdt>
0
t
— m(2m —1) / E [M2"2X2] dt
0
E [M2"2X2] < E [E[M" | F)X2| = B [M2""2X2] and again,
t t
M2 = 2 (1) / M2 =34W, + (m — 2)(m — 3) / M2m—4X2 s
0 0
Then do induction. O
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Excercise. Let {M = (Mt(l),..., Mt(d)> ,Ft,0 < t < oo} be a vector of continuous local Martinagle on some {Q), F, PP}, and
define

- , , d.
Al &~ M(l),Mt(]) >, Aw) 2 Y A (w)
ij=1

where A1) denotes total variation of AU on [0,t]. Let Ts(w) be the inverse of the function Ay(w) +t, ie. Aty + Ts(w) =
5,0 < s < o0,

1. Show that for each s, Ts is a stopping time of Fi.
2. Define G; = F1,;0 <'s < oo. Show that if F; satisfies the usual condition, then so does Gs.
3. Define
ND2MY, 1<i<d 0<s<o
Show that for eafch 1 < i < d : N' € M¥¢, and the cross variation < N', N/ > is an absolutely continuous function of s
as. P.

Proof. (1) Consider {Ts; < t} = {A;+t > s} € Fr.
(2) Gs =Fr, ={A € F: An{Ts < t} € F}, so Gy = Fp which contalls all IP null sets. Now consider

ﬂ gt = m ‘7:Tt+e

e>0 e>0

= ﬂ{AGJ:IAﬂ{Tt+6<S}€]:5}

e>0

=({AeF:An{As+s>t+e} e F}
e>0

:gs

so right continuous.
(3) There is {S,} sequence of stopping time with Mg »; € M. Note that T; is finite a.s., so let t < s and use
Optional Sampling theorem we have

E[Ms,A1,|Gt] = Mg, aT,

3.5.C Continuous Local Martingale as Time-Changed Brownian Motion

A

Problem (3.4.5). Let A = {A(t);0 < t < oo} be a continuous, nondecreasing function with A(0) = 0,5 = A(o0) < oo, and
define for 0 <'s < co

inf{t >0:A(t) >s};, 0<s<S

Show that the function T = {T(s);0 < s < oo} has the following properties
1. T is nondecreasing and right-continuous on [0, S), with values in [0,00). If A(t) < S;Vt > 0, then lim4g T(s) = oo.
2. A(T(s)) =sAS;, 0<s<oo.
3. T(A(t)) = sup{t > L A(T) = A(t) };0 < t < 0.
4. Suppose ¢ : R™ — R is continous and has the property
A(ty) = A(t) forsome0 <ty <t = ¢(t1) = ¢(t).

Then ¢(T(s)) is continous for 0 < s < S, and
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5. For0<t,s <oo:s<A(t) <= T(s) < tand T(s) < t =t < A(t).

6. If G is a bounded, measruable, real valued function or a nonnegative measurable, extended real valued function defined on
[a,b] C [0, 00), then

/hG(t)dA(t) - /A(b) G(T(s))ds

a A(a)

Proof. (a) {t > 0 : A(t) > s1} C {t > 0: A(t) > sp} if 51 > sy, so the corresponding inf is also bigger in the first
set. Now suppose A(t) < S for t > 0, then lim; ;o A(t) = S. Since T is nondecreasing, suppose by contradiction that
T(0) = Teo < 00, then for all sequence t, — S such that inf{t > 0; A(t) > t,}. Now take t, be such that A(t,) is
strictly increasing and A(t,) — S. Then inf{t > 0; A(t) > A(t,)} = t, which goes to infinity.

(b) Suppose s < S, then by continuity we have T(s) = sup{t > 0 : A(t) < s}, then by continuity we are done. If
s > S, then by definition we are also done.

(c) First suppose A(t) = S, then T(A(t)) = oo, and since A(t) is nondecreasing, we have A(s) = S for all s > ¢, so
T(A(t)) = 00 = sup{t > 0: A(t) = S}. Now suppose A(t) < S, then T(A;) = infI, where [ £ {T > 0: A(7) > A(t)}
exists. If T > T(A(t)) then T € I, so I = (T(A(t)),o0) and T(A(t)) = sup(R")\L.

(d) We have T(A(t)) = tAS. Since T(s) is right continous, we only need to show left continuity here. Let
t, — t~ < S, we only need to look at the case where T is not continous at t. But here we have A(T(t7)) = A(T(t)) =t,
so ¢(T(t7)) = ¢(T(t)), so still continuous.

(e) Suppose 0 < t,5 < oo and s < A(t), where T(s) = inf{t > 0: A(T) > s}, thereis a 0 < ' < t such that
s < A(t') < A(t), so T(s) < t' < t. Now suppose T(s) < t meaning t € {T > 0: A(T) > s}°. Now suppose T(s) < t,
meaning t € {t > 0: A(1) > s}.

(f) This is just the change of variable formula. O

Problem (3.4.7). Show that if P[S £< M >«< 0] > 0, it is still possible to define a Brownian Motion B for whcih My = By,
holds.

Proof. Let’s say Q) is rich enough such that there is a independent Brownian Motion W. Define S £ lim;_,co < M >¢.
By Problem 4.5 we have that

{T(s) <tt={s<<M>}eF {<M><t}={T() >s}

Define G; = ]—"T(t), then {< M >;< t} € Gi, so < M >, is a stopping time of G;. Also, recall a theorem says limit sup
or inf of a sequence of stopping times is also a stopping time if the limit exists, so S is a stopping time of G; as well.
Now consider the martingale M; = M, AT(s)- there we have

<M >=< M >;,7( << M >1()=s
So both M and M?— < M > are uniformly integrable. Now let s’ < s, then consider
E[Mr(s) = My | Fr(s)] =0
IE[(MTS - MT(s’))z | Frn] = E[< M >15 — < M >1g | Fren]
SO ]\7It is a square integrable martingale with respect to G; £ .FT(t). Now let
B = Wi — Wsnt + M)
We note that by the same argument as in the theorem we have My ;) is almost surely continuous, now

<B>t=t—5/\t—|—<M>T(t):t—5/\t+5/\t

0s < B >;=tas.. O

3.5.C Girsanov Theorem

Problem (3.5.6). Assume the hypothese of theorem 5.1 and suppose Y is a measurable adapted provess satisfying IP| fOT YZdt <
o] = 1,0 < T < co. Under P we may define the Ito integral fot stWS(l), whereas under P we may define the Ito integral
fot YSWS(Z),O <t < T. Show that for 1 < i < d we have

t t . t . ~
/ Yodw!) = / Yodw!) — / Y.x%ds; 0<t<T, PandD.as
0 0 0
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Proof. Hint: Prop 2.24: M € M/¢ and X progressively measruable with fot X2d < M >3< o a.s.. Then IM(X) is the
unique local martingale @ such that for all N € Mot < o N >,= fot Xuyd < M,N >,.
Now let’s use Proposition 5.4: Let N € M%/¢, and from Prop 5.4 we know that

- to .
N, 2N, —/ xDq < Nwd >
0
is a local martinagle in M%°°. From Prop 5.5 we know that every N € M has the above form. Now
Yoaw® — [y xWas N Yaw® P
< / Yodw!) — / Y, xWds, Ny > =< / Y.dW N, >  asP and Pr
0 0 0
Recall that VNVt EW— fot Xgi)ds, which is a standard Brownian Motion under ﬁT. So consider
¢ t .
</0 YodWe, Ny > :/0 Yod < W,N >,

t ~
- / Y.d < W,N> Pras.
0

O

Problem (3.5.7). Let T be a stopping time of the filtration {F}'} with P[T < o] = 1. A neccessary and sufficient condition for
the validity of Wald Identity is

IE[exp (wa - ;;ﬂT)] =1
where y is a given real number, that is
PH [T < o] =1.
In particular, if b € R and ub < 0, then this condition holds for the stopping time
Sp £ inf {t > O;W; — ut = b}
Proof. Let Z(t) £ exp (th -1 yzt), then Z(t) is a Martingale, and P(*) is defined to be
P (A) 2 E[1,Z(t)] for Ae FY

Then now consider

P[T <oo] =P || J{T <n}

n>1
= im P[T < ]
t—00

= lim E [1{T<t}z(t)}

t—o0

= lim E {1{T<t}]E (Z(t)|]:t/\T)}

t—c0

= lim E (1{T<t}Z(t A T))

= lim B [1{T<t}Z(T)} = E[Z(T)]

where the last two equatilies are due to optional sampling and monotone convergence. This shows if and only if part
of the statement. The second part of the problem is given directly by the discussion above the problem. O

Problem (4.5.8). Denote by

h(t;b,u) £

_ 2
exp {—ajzft)}; t>0,b#0,ueR

273
Use Theorem 2.6.16 to show that

h(;b1+ by, u) = h(; by, ) *h(b; by, 1); biby >0,u € R

where * denote the convolutions.
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Proof. Theorem 2.6.16 says that for almost surely finite stopping time S, we have Bg ; — Bg is a standard one dim
Brownian Motion with respect to its nature filtration when B itself is a Brownian Motion.

Now, h(t;b,u) = % by R-N theorem. We know that W; £ BTb1+t — BTb1 is an standard one dim Brownian

Motion that is independent of ]—'Tbl . Since since we have the condition b1by > 0, then Ty 1, = TZX , S0 we have
W
P (Tb1+b2 S dt) = ]PM[Tbl + sz € dt]
but we know that Tg’l‘] = Tj, in measure. Hence we are done. O

Excercise (3.5.9). With u > 0 and W, £ inf;so Wy, under P* the random variable — W, is exponentially distributed with
parameter 2, i.4.,

P* [W, € db] = 2ue 2", b >0
Proof. We look at

PH [~ W, < b] = PH [T_, = ]
=1—TPF[T_; < 0]

then take the derivative we will get the desired answer. For this to work, ub > 0 must be satisfied. O

Excercise (3.5.11). Consider for v > 0 and ¢ > 1, the stopping time of { F}V}:
1
R; = inf {t > 0;exp {th — 21/21,‘} = c}

Show that

Proof. Let Z,(t) = exp [th - %Vzt} , and by Problem 2.28 it is a martinagle. Now consider

P# [R, < o] £ E [X{RCQO}Z(RC)} same as before
=IP[R; < oo]c

Now we only need to show that P# [R, < oo] = 1. Note that
1, _ 1
exp |VW; — SV tl=c<=v| W+ Evt = log(c)

Where Wt is a one dim standard Brownian Motion under IP*. By the assumption that ¢ > 1, we see that P# (R, < o) =
1.

Now for the second part, we use Walds Identity, we can use it because Z(t) is not only a martinagle, it is also a
positive super martinagle, therefore, by Problem 1.3.68 this process has a last element Zo, and {Z;; ;0 <t < oo} isa
martinagle, hence by problem 1.3.19(20) it is a uniformly integrable family of random variable, hence we can use Walds.

E'[Wr] = 0 = 0 = E[W;] = IOgV(C) - %VIE[T]
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4 Brownian Motion and Partial Differential Equations

4.2 Harmonic Functions and the Dirichlet Problem

Problem (4.2.4). Suppose D is a bounded and connected, u is defined and continuous on D, and u is Harmonic in D. Show that
u attains its maximum over D on dD. If v is another function, Harmonic in D and continous on D, and v = u on 0D, then v = u
on D as well.

Proof. By assumption, u is also Harmonic and continous on D°, so by the Maximum Principle, we know that the sup
or max is accheived on the boudnary.

Now if v = u on 9D and they are both Harmonic, then w £ u — v is also Harmonic and w = 0 on dD. So supp, w = 0.
Also, —w is also Harmonic and is zero on the boudnary, so supp, —w = 0in D. so w = 0 in D, hence u = v on D. O

Problem (4.2.16). Let D C R? be open, and suppose that a € dD has the property that there exists a point b # a in R*\D, and
a simple arc in R\ D connecting a to b. Show that a is reqular.

Proof. Using Example 2.14 we can define a barrier at (0,0) if we assume a = (0,0) using the curve that connecting a4 and
b as a slid. O

Problem (4.2.25). Consider as given an open, bounded subset D C R? and the bounded, continous function ¢ : D — R and
f:9D — R. Assume that u : D — R is continuous, of class C?(D), and solvese the Poisson Equation

%Au =—-g

subject to the boudnary condition
u=f, onoD

Then establish the representation

u(x) = (WTD+/ Wtdt> xeD

In particular, the expected exit time from a ball is given by

Hint: Show that the process {Mt = u(Wipngy) + f tATD g(Ws)ds, Fi;0 < t < oo} is a uniformly integrable martinagle.

Proof. First let’s invoke Ito’s formula:
(wtfuwo+/2 (We)awl) + /AuWS

t
u(Wo) +/ Z ws aw!? /Og(Ws)ds P*-x a.s. for all x € D

Thereofre,

tATD EATD d )
u(Wt/\TD) +/O g(Ws)dS = M(WO) +/0 2 al

—(W)dw. ¥ as.
i=1 """

which is a martinagle. Now consider its quadratic variation:

tATD tAtp 4 ()
u(Wintp) +/0 g(Wy)ds > =< /0 Z (Ws)dWg

l
— Jx;
thtp 4/ Ju
/0 Z(a Ws>ds

i=1
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and by the fact that ||u|;« (D) < o0 we see it is uniformly integrable by Problem1.5.24. Then the convergence theorem

of martinagles shows that this Poisson Problem as the desired representation as above.
For the second part of the problem, let —¢ = —1 and f(x) = % on 0B,, then u(x) = rz—‘ngz is the analytic

solution to the Poisson Problem. Therefore, by the representation we have established so far, we have the following
equality:

2 72_ W. 2
= ﬂix( —t +> — B (1)

O

Problem (4.2.26). Suppose we remove condition (2.14) in Proposition 2.7. Show that v(x) £ P* (1p = o) is harmonic in
D, and if a € 0D is regular, then imy_,,.xcpv(x) = 0. In particular, if every point of oD is reqular, then with v(x) =
E* [f(Wrpley<wo)], the function u + Av is a bounded solution to the Dirichelet problem (D, f) for any A € R. (It is possible to
show that every bounded solution to (D, f) is of this form; see Port & Stone (1978), Theorem 4.2.12)./

Proof. Intuitively we have
PY (tp = ) = P° (TD — 1B, = OoleBr = ]/) =P [TD = OoleBy = ]/]

Therefore,

PY [1p = ool du(y) = / P* [1p — = oo|Ws,,, =y|d
/3(X+Br) [TD OO] y<y) aerBr] [TD Txt-By OO| Tx+By y] ‘le(y)

[
= / P* [tp — Ty+p, = o] du(y) by independence
a[JH*Br}

— P[tp — Tysp, = oo
=P*[tp = 0] since Tp, 4 <

Now suppose a € 9D is regular, then from Theorem 4.2.12 (iii) we know that

lim P*(tp=o00)< lim P*(tp>e€)=0 Ve>0
x—a;xeD x—a;xeD

Now suppose every point on the boundary is regular, then v would be harmonic in D and continuous on D. So
consider the other part

u = E" [f (WTD) 1TD<00] =E* [IEX [f (WTD) 1TD<°°|]:Tx+Br]]
= E* [u(Wr,,)]
= /8(x+B,) u(x +y)du(y)

hence u is a solution to (D, f), so u 4+ Av is the solution to (D, f) since v has boudnary value zero. O
Excercise (4.2.27). Let D be bounded with every boundary pont reqular. Prove that every boundary point has a barrier.

Proof. Leta € dD, and let f : 0D — R be such that f > 0 on dD\{a} and f(a) = 0 be a continous bounded measurable
function (since 0D would be compact here). Then the function defined by (2.12) would be harmonic in D, namely,

u(x) 2 E* (f(Wqg,)) W is a standard one dim BM

Now, by Theorem 2.12 we see that u is continous on D. So the only thing left to show is that u is positive on D. First
we see that u is not constant since it has to agree with f on the boudnary. Also, notice that —u is also harmonic on D.
So let’s only look at the connected component of D such that a is in its boundary, call this region D. Then by maximum
principle on —u we see that —u(x) < 0 for all x1D. So we are done. O

Excercise (4.2.28). A comoplex valued Brownian Motion is defined to be a process W = {Wt(l) + th(z), Fi;0 <t < oo}, where
W= {Wt(l), Wt(z),]-},O < t, o0} is a two dim Brownian motion and i = v/ —1:

o Use Theorem 3.4.13 to show that if W is a complex valued Brownian Motion and f : C — C is analytic and nonconstant,
then under an appropriate condition, f(W) is a complex valued Brownian Motion with a random time-change.
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o With & € C\{0}, show that M; = cjeW,O < t < oo is a time changed, complex valued Brownian motion. (Hint: use
Problem 3.6.30).

Proof. Fot the first part, I am sensing Cauchy Riemann Formula, so let’s use Ito’s Lemma first to u,v where f(x,y) =
u(x,y) +iv(x,y). We know from Cauchy Riemann that u, v must be harmonic, therefore, we have

2 t .
MMPW@+ZAMMWW
i=1
for w = u, v, therefore we see that

_ z W[ (i)
£ = £0)+ 3 [ (Wo)aWl? + [Ci, (We)aw

_ 2, rt (i

-J@+§A&MMM

so f(W;) is a local martiangle, so is f(W;) and the independence of the 1-dim Brownian Motions makes f(W;) satisfies
the conditions for Thoerem 3.4.13.
For the second part, never read section 3.6, so not doing it. O

4.3 The One-Dimensional Heat Equation
4.3.B. Nonnegative Solutions of the Heat Equation
Excercise (4.3.8). (Widder’s Uniqueness Theorem)

1. Let u(t, x) be a nonnegative function of class C' defined on the strip (0, T) x R, where 0 < T < oo, and assume that u
satisfies (3.1) (the Heat Equation) on this strip and

li t,y) = 0; R.
t@%ww x€

Show that u = 0 on (0, T) x R. (Hint: Establish the uniform integrability of the martinagle u(t —s, Ws);0 < s < t.)

2. Let u be as in (1), except now assume that limy g, . u(t,y) = f(x);x € R. Show that
u(t,x) = /lRp(t;x,y)f(y)dy; 0<t<T,xeR.

Proof. (1) From Corollary 3.7 we see that {u(t —s, W;); F5,0 < s < t} is a martinagle on (Q, F,IP¥) for all x € R, and
u(t,x) =E*[u(t—s,W;)] forall0 <s <t < T,x € R. The Ito’s lemma gives us

S
u(t —s, Ws) = u(t, Wp) —i—/ g—Z(t —0,Wy)dW,; P*-as. Vx € R
0

1By assumption we know that lims_¢ u(t — s, W;)(w) = 0 pointwise a.s. by continuity of W;.

Honestly, I have no idea how to show it is uniformly integrable. However, we can decompose the measure induced
by F into the sum of two measures, one is absolutely continuous with respect to Lebesgue’s measure, and another one
is point measure, and use the properties of mollifier, uniformly convergence. So know that dF = dF’ + Y, Jx,, where
dF'(x) = f(x)dx where dx represents Lebesgue measure. So we have

s (5550 o (5 o B o (45)

we send t — 0 and note that p(t; x,y) converges to zero uniformly outside of any ball centered at x when x # y, so the
second part goes to zero. Note note that the first part is convolution between the mollifier and the measurable function
f, this convolution converges to f, hence f = 0 by assumption. Therefore we have the result. The second part can be
proven by the same method, but really, no idea how to prove it probabilistically. O

Before we continue, let’s take a detour to Brownian Motion with absorption at zero.
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Problem (2.8.6). | Derive the transition density for Brownian Motion absorbed at the origin {WMTO;]-},O <t < oo}, by
verifying that

P* Wy edy, To >t] =p- (5x,y)dy £ [p(Ex,y)—ptx,—y)dy, s>0,t>0x,y>0
Proof.

P [W; € dy, Ty > t| = P* [W; € dy] —P* [Wy € dy, Tp < 1]
= ]Px[Wt S d]/] —P* [Wt S d(—y)]
pluge in the transition probability of Brownian Motion then we are done, where the last equality is given by the

Reflection Principle

4.4. The Formulas of Feynman and Kac
4.4.A The Multidimensional Formula

Excercise (4.4.6). Consider the Cauchy problem for the "quasilinear” parabolic equation

W _ Lyl SNAVIP 4k in (0,00) x R
ot 2
V(0,x)=0; xeRY

(linear in (aa—‘t/) and the Laplacian AV, nonlinear in the gradient AV), where k : RY — [0,00) is a continuous function. Show

that the only solution V : [0,00) x RY — R which is continuous on its domain, of class C? on (0,00) x RY, and satisfies the
quadratic growth condition for every T > 0:

—V(t,x) < C+a|x|% (tx)€[0,T] x R?

where T > 0 is arbitrary and 0 < a < 3Td, is given by

V(t,x) = —logE* {exp {— /Otk(Ws)dsH

Proof. Let t < T and denote A; = exp {— fos k(Wy)dr} and Bs = exp{—u(t —s, Ws)}, note that B has finite total
variation, so < B >;= 0, hence < A, B >;= 0. So by the stochastic version of integration by parts formula we have

dAsBs = AsdBs + Bsd As

where we know that dB; = —exp {— [; k(W;)dr} k(Ws) since the integral is defined in Lebesgue’s sense. Now let’s use
Ito’s lemma on dAs.:

ou 4 9u (i) 1
dAs = g(t—s, Ws) Asds + As l; o, (t —s, Ws)dWy' <||Au( -5, Ws)| — EAu(t —s, Ws)) Asds

4 Ju (i)
sk(Ws)ds + A Y g(t — 5, W5 )dWg
i=1 9
So we have
4 Ju (i)
d(AsBs) = AsBsk(Ws)ds + AsBs 2 g(t — 5, W5)dWy” — AsBsk(Ws)ds
& 0x;

Now let R, = inf;>{||W;|| > n} and integrate this from 0 to t A R, and take expectation with repsect to IP* for any
fixed x € R" to get

u(t,x) = EY {exp {—u(t — E AR, Wing,) — /ORan(Ws)dsH
_E [exp {_ /Otk(Ws)ds} 1Rn>t] LR |:exp {—u(t — Ry, Wr,) — /OR” k(WS)ds} 1Rn§t]
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Now the first term converges to E* {exp {— fot k(Ws)ds}] by bounded convergence theorem since k > 0. Now consider
the integrand of the second term: for some C > 0 we have

RH

E* {exp {—u(t — Ry, Wg,) —/ k(Ws)ds} 1Rn<t} < Ce"P*{R, < t}
A <
< Ce™ (PX[T, < ] + P*[T_, < #])*

d
— Ce” (JPO[Tn,x <H+PO[T_py < t})

2 * 2 g 2 d
= Cle™ / eV 2dy + eV /2y
|n+x|t—1/2 |—n—x|t=1/2

Let’s denote n, = min{|n — x|, | — n — x|}, then above is less than the following

2

2 1 n

Cle"2 —e 7
Ny

by the condition imposed on 4, we see it goes to zero. O

Excercise (4.4.7). Let ¢ be the solution to
1 d
(oc+k)1p:§Az/)+f; on R

and let f R¥ — R and k : R* — R™* be continous, with

E* [/Ooo |f(Wt)|exp{—zxt—/Otk(Ws)ds}dt < oo} ; VxeRY,

for some o > O, the same « as in the definition of . Now let’s define z to be

2(x) = E¥ ['/(;wf(wt) exp {—vct _ /Otk(WS)ds} dt} .

If ¢ is bounded, show that ¥ = z; if 1 is nonnegative, then 1 > z. (Hint: Use Problem 2.25).

Proof. Let’s first try the usual method for proving uniqueness: suppose ¢ is a bounded solution, we show that it must
of of the form of z, then we should be done here. Let A; = f exp {—zxt - fot k(WS)ds} and consider (reason same as
the previous problem):

d [p(Wr) At] = Ardip(We) + p(Wr)d Ay

where dA; = —A¢(a + k) and

)1
(W) dw ™ + S Dp(W)dt

.m&
e

Il
-

dp(Wy) =

(W) dW + (a+ k(Wp)) (W) — f

I
™=
cv‘_g

Il
_

X;

combine them to get

d [p(We) Ar] = Ardp(Wi) + p(We)d Ay

d
_ o (i
- At; o (W) dW," — Acf
Now integrate from o to infinity, we can do this because we have the integrable condition. By the assumption that ¢ is

(uniformly) bounded, taking expectation with respect to IP¥, we get the desired result. O
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Chapter 5 Stochastic Differential Equations

5.2. Strong Solutions

Problem (5.2.7). Suppose g(t) is continuous and satisfies
0 <g(t) §¢x(t)+,3/0tg(s)ds; 0<t<T
with B > 0and w : [0, T] — R integrable. Then
g(t) < a(t +/3/ (s)ePt=9)ds; 0 <t<TO

Proof. Denote G(t fo s)ds, then the above inequality reads

G'(t) < a(t) + BG(s)

:%e‘ﬁtG(t) — e PG (1) — BePIG(H) < e Pla(t)

Now integrate on both sides from 0 to t with dummy variable s we have

t t t
e PIG(t) < / e Pou(s)ds = G(t) :/ g(s)ds < / P9 (s)ds
0 0 0
Put this back into the original inequality we shall get the desired result. O

Problem (5.2.10). For every T, show that there existst C > 0 depending only on K and T such that for the interations:
t t
x ) — §+/ b(s,Xs(”))ds—ir/ 7 (5, X w0 <t < oo
0 0

forall n > 0 where Xt(o) = ¢, where o and b satisifes the global Lipschitz and linear growht conditions, namely:
16t x) = b(t,y)[| + llo(t, x) — ot y)|| < K][x =y,
ot )12 + llo(t, 1) < K2 (1 + |x]1?)

with initial condition ¢ being square integrable. Show that we have
E(IX{” %) <  (1+E|jg|?) &

Proof.

t B d
E[|X"]?) < C (lE|IC|2 +E [ (s, XY s + Y
i=1

vt
£ ety

t t
C (Bl + & [/ Iots, xE) s+ [ ots,x) Pas)

c (B [P+ 2 [ 1+ 1Y ] )
0
CE

t
&2 +CK2t+c1<2/ E|x%]|ds

t d
<C (JEIIC|2 +E [ (s, X Pds + LB
i=1

IN

Note that here C is independent of k. Note that < T, so we can obsorbe ¢ and K into C, the simplified inequality reads
T
k-1
BlIXY 1 < c+Elig|?) + ¢ [ B s

Iterating this inequality gives us the desired result, where the Taylor expansion would kick in. O
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Problem (5.2.11). Show that the process constructed in the proof of Theorem 5.2.10 satisfies requirement:
t t
X =¢ +/ b(s, Xs)ds + / o (s, Xs)dWs
0 0

Proof. In the proof, X; is constructed as a pointwise sup limit of X(X) on any finite interval [0, T], that is,

sup || Xi(w) — X (w)|| = 0; VT > 0.
t€[0,T]

From this condition we see that
t t
/ 1b(s, Xs) — b(s, Xx0) 1 ds < / K2||Xs — Xx®)|ds
0 0

< TK? sup [|X; — XV
te[0,T]

which converges to zero a.s.. By simimar arugument we see that
. f (k) 2 . f (k)2
lim E || [ (s, X:) =5, X )ds?| < lim E| [ lo(s, Xo) — (s, X)) Pds
k—o00 0 k—o00 0

: b2 (k)12
< lim E /K||XS—XS I[2ds
0

k—o0

By (2.15) and (2.17), we can use Dominated Convergence theorem to move the limit inside the integral and see it goes
to zero since we have uniformly convergence for each w. So the second term converges to the corresponding ”X term”
in L2(Q), F,P), hence converges in probability.

So far we have X®*) converges to X a.s. and x (k) converges to ¢ + fot b(s, Xs)ds + fot o (s, Xs)dWs in probability, so
those two things are equal a.s.. O

Excercise (5.2.17). The stochastic equation
to1 2
X =3 [ xids+3 [ X)dw,
JO 0
has uncountably many strong solutions of the form

P =

] {0; 0<t<pBy

TIW Be<t<oo
where 0 < 6 < coand B = inf{s > 6; W, = 0}.

Proof. In another words, X¢ = Lispg, WP = W) — W)

iNBo" Use Ito’s formula we have
0

t t
W3 :3/ WSZdWS—l—?)/ Wids
0 0

t t
W25, :3/0 waﬁodwer?)/O Wi pods
SO
t 2 5 t
X; = 3/0 W2 — W2, 5, AW +3/0 Wi — Wypg,ds

Observe that

W W )]0 whent < By —X%
° ShBe — W, when By <t<oco °°
and
W2 W2 0 when t < By —X%
s s\Bo WS2 Whenﬁ9§t<oo_ s

so we have the desired result for # € Rt. When 6 = 0, then X; = Wf’ which solves the equation, and when 6 = oo, then
X; = 0 is the trivial solution. O
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Excercise (5.2.19). Suppose that in Proposition 2.18 we drop condition (v) but strengthen condition (iv) to
bi(t,x) < by(t,x); 0<t<oo,x€R

Then the conclusion (2.32) still holds. Hint: For each integer m > 3, construct a Lipschitz-continuous function by, (t, x) such that
bi(t,x) < by(t,x) < by(t, x).

Proof. Let's say E fot |o(s, Xs)|*ds < 0. Define

AR X / (b5, Xy — (s, x12) }ds+/ (o(s, X)) — o (s, X2 1aw,
Note that we have the condition
lo(t,x) —o(t,y)] <hlx—y| VxeR;x,yeR

where i : [0,00) — [0, 00) is a strictly increasing function with /(0) = 0o and
/ h2(x)dx = 00, Ve >0
(0)

That means there exists a positive and strictly decreasing sequence {a,} such that a;, | 0 such that f;": ) h=2(x)dx = n

for all n > 1. Now by Urysoln or variation of it, there exists a function p, for each n such that 0 < p,(x) < wiht

2
nh(x)
fan+ pn(x)dx =1 and p,(x)’s support is contained in (a1, &y).

We now define the following function

Pn(x) = Ljge0)(x //Pn u)dudy

so0 ¢ is continuously twice differentiable and |¢’| < 1 by the property of p,,. Also, lim, e ¢n(x) = x. Futhermore, the
sequence { ¢, } is nondecreasing.

Now, let f(t, x) £ %(bl(t,x) + by(t,x)), and 7¢ be a set of mollifiers (in usual sense) and define fo = f * 7. So fe is
also smooth hence Lipschitz-continous in a compact subset of R™ x R. For each m > 3, let €, be so small such that fe,,
is between by and b, on the set 0 < t < m and |x| < m (we can do this because of the uniformly convergence) and let

by = fe,. Now let R() 1nft>0{|X | =m} and let R;, = R,(,p /\R,(f).
Now let T be any positive number and t = T A Ry, then by the same argument, we can have the relation

Egn(Ar) — % < E/ot o (A) [bl (5, XD _ by (s, Xﬁz))]
" Uot P81 (1, X:") = b, xé”)}ds}
S | [ (0ot X)) = bt X |
o M 91 (89) [bm(t, X:%)) = ba(, <2>>]ds}
=F Uot @ (85) b (1, X)) = b, xs(”)]ds]
t
< Km/o ]E[A;']ds

Let n — oo and use Gronwall inequality we see that IE[A,"] = 0. Now, since t depends on m as well, we vary m and use
t; instead to indicate this dependency. As m — oo, by DCT we have desired result. O

Excercise (5 2.20). Suppose that the coefficients ¢ : R — (0,00) and b : R — R are of class C2,C! respectively; that b’ —

%aa — 2= is bounded; and that 1 is not integrable at either +0o. Then

t t
xt:g+/ b(xs)ds+/ o(Xs)dWs; 0<t< oo
0 0

has a unique, strong solution X. (Hint: Consider the function f(x) = fox ‘%“) and apply Ito’s rule to f(X¢).)
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Proof. 1 guess we are also assuming that f given by the hint is defined when x # *co, Picard’s Iteration method might
not work, so try the hint first:

b(Xs) 1t

t
_ 1 /
f(Xe) = f(¢) +/0 a(xs)d + Wi — 5 [ 0(Xo)ds
Ep(X 1
@)+ [ 25 - 5o +
Note that % (gg% - %U(x)) = ﬁ (b’(x) — 1o (x) - UI(;()J?)(X) ) We need some boundedness condition of 1. O

Excercise (5.2.27). Solve explicitly the one-dimensional equation

dX; = (w/1+Xt2+ ;Xt) dt + /1 + X?dW;

Proof. Let o(x) = v/1+ 22 and b(x) = o(x) + $x. We see that

R

Using the notation from Excercise 5.2.20 we get

df (X¢) = dWy
and suppose Xy = 0 a.s., then f(X;) = OXt % =In <Xt +4/1+ Xt2> = W;. Solve to get

1
X = Ee*W‘ (e —1)
O

Excercise (5.2.28). 1. Suppose that there exists an R%-valued function u(t,y) = (u;(t,y))1<i<q of class C12([0,00) x RY),
such that

ou; ou ..
o by) = bibuty)), S=(by) = o(bulty)); 1<ij<d

i

hold on [0,00) x RY, where each b;(t, x) is continuous and each 0y is of class C'? on [0,00) x RY. Show then that the
process

Xi 2u(t,W;); 0<t<oo
where W is a d-dimensional Brownian motion, sovles the Fisk-Stratonovich equation

dX; = b(t, Xt)dl’ + O'(t, Xt) o dW;

2. Use the above result to find the unique, strong solution of the one-dimensional Ito equation

14t
Proof. Recall the Fisk-Stratonovich Integral is defined for semi-Mtgs X, Y as

dX; = [zxt —a(1 +t)2} dt+a(l1+1)’dW; 0<t< oo

t t t 1
/Ysodxsé/YSMS+/YSdBS+§<N,M>t;0§t<oo
0 0 0

where the meaning of each term is apperant. So turn the SDE in Ito’s sense, we need to solve
adX; = b(t, Xt)dt + O'(t, Xt)th +d< U'(', X.), W. >,

Now we use Ito’s Formula on u(t, W;):

_u

2
a—z(t, W, )dt
Xi

o%u
— (t, Wy)dt
z:zl ox}

1
2

1

u

du(t, Wt) = o

d
d
(t, We)dt + Y == (t, Wy)dW; +
i=1 axi

. QU

= b(t,u(t, Wy))dt + o (t,u(t, Ws))dW; +

N~
. —

The definition of o (t, X¢) o dW; is unclear since ¢ is a matrix so the quadratic variation makes no sense. Howevere if
the quadratic variation is defined to be 2?21 O’i,]'(i’, Xy )d Wt] , then we are done here. O
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5.3. Weak Solutions

5.3.B. Weak Solutions by Means of the Girsanov Theorem
Problem (5.3.13). Consider the stochastic differential equation

dXt = b(t, Xt)di' + U(t, Xt)th

with o(t,x) be a d x d nonsingular matrix for all t > 0,x € RY. Assume that b(t, x) is uniformly bounded, the smallest eigenvalue
of o (t, x)o'" (t, x) is uniformly bounded away from zero, and the equation

dXt = O'(t,Xt)th; 0 <t< T

has a weak solution with initial distribution w. Show that the first equation also has a weak solution for 0 < t < T with initial
distribution .

Proof. Let’s say that the problem meant o(t, x) has smallest eigenvalue uniformly bounded away from zero, since it is
this case on the PDF and it makes the problem easier. In this case, o'(t, x) is invertible and the eigenvalues of o~ !(t, x)
is uniformly bounded, hence o~! (t x)b(t, x) is also uniformly bounded since b is uniformly bounded.

Let Z; = exp{ ‘1 fo Z] 105 (s, Xs)bl (s, Xs)dWs — fotHU’l(s, Xs)b(s, XS)||2ds}, by Corollary 3.5.13 we see that

Z; is a martinagle for 0 < t < T where W; is the Brownian motion in the weak solution of the second SDE. Define P by
P(A) = E[14A7] for all A € Fr, then we see that

_ t
Wy = W, —/ o= (s, X )b(s, Xs)ds;0 < t < T
0
is a Brownian motion under (Q, Fr, ]I~’) Writing it as componentwise as the following

Wi = wi — /Za’lb 5, X)ds; 1<i<d

is a standard one dimensional Brownian motion under the same probability space. Now denote
Cl(t,Xt) Z] 1 z] (i’ Xt)bj(t,Xt>.
By Problem 3.5.6 we see that for all Y; such that lP[f(;f Y2ds < o] =1 for 0 < t < T, then we have

YidWi = Yy dW] — Yl (t, Xp)dt; 0<t<T, aslP,P
Assume WLOG that fot |los||ds < oo a.s.. So in matrix form we have

O'(i’, Xt)th = O'(f, Xt)th — b(t, Xt)dt
= dX; — b(t, Xy)dt; P,P

Since P and P agree on F, then we are done here, and the solution is (Q), .Ft,]f’) and X;, Wt. O

Problem (5.3.15). Suppose b;(t,y),0;i(t,y);1 < i < dand 1 < j < r are progressively measurable functionals from [0, 00) x
C[0, )% into R satisfiying

ot + oI < K (14 max v(s) )3 v0< e <, yeclo,w)
S8
where K is a positive constant. If (X, W), (Q), F,P), { F:} is a weak solution to
dXt = b(t, X)dt + U(t, X)th
with || Xo||*™ < oo for some m > 1, show that for any finite T > 0, we have
2m < 2m Ct. < <
E{max|| X[ < C (14 E[X|*") e 0<t<T
E(X: - X|2"] < € (1+ B[ X)) (t=9)"; 0<s<t<T

where C is a positive constant depending only on m, T, K, d.
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Proof. Under corresponding probability space and Brownian Motion, we have
t t
X = Xo+ / b(s, X)ds + / o (s, X)dWs
0 0

Now by Problem 3.3.29 and Remark 3.3.30 and Funini’s

s t t m
]E||max/ o (1, X)dW, |2 < Am/ E[[lo(s, X)||?"]ds < Am/ E [1+ max||xs||2}
0<s<t .Jo 0 0 0<s<t

and

.t t m
E (||/ b(s,X)ds||2m) g/ E (1+ max||Xs||2> ds
0 0 0<s<t

m
(a4 b)™ = (20% + %b) < 2m=lgm 4 om=1pim by Jessen’s. Let’s denote By = [E [maxo<s<¢||Xs||*"], so we have

t
Bi<C <2]E[||X0||2m] +2Ath+2AmD/ Bsds>
0
t
CRE[||Xo|2"] + 1) Jrc/0 Bods

For some C, D where the C’s in each line could be different. Then by Gronwall we are done.
Now for the next assersion, is a direct consequence of the first one with the fact that elS >t —sfort>s. O

5.4. The Martinagle Problem of Stroock and Varadhan
A. Some Fundamental Martingales
Problem (5.4.3). Let b;(t,y),0;(t,y) : [0,00) x C [0,00) — R be progressively measurable functionals for all 1 < i < d,1 <
j < r. We define the diffusion matrix a(t,y) with components
T
ajx = Z(Tij(t,y)(rkj(t,y); 0<t<oo,ye Cl0,0)
j=1
Suppose that (X, W), (Q, F,IP),{F;} is a weak solution to the functional stochastic differential equation
dX; = b(t, X)dt + o (t, X)dW;
and set that

d d (
du(y(t)) .
ai(t, y + bi(t,y) ;
IPLCE s el IR -

N\*—‘

0<t<oo,uc Cz(]Rd),y € C[0,00)"

Then show that for any function f,g € C[0,00) x R? N C2((0,00) x R?), the process
f _a f af /
M =2 £(t,X;) — £(0,Xo) — /0 Sy aif| (o305, Fro<t<e
is in M1°¢, and

98 (s, Xs)ds.

(S Xs)axk

5
< Mf,MS >,= 1<Z / ai(s, X)af
i,j<d

Furthermore, if f € Co(]0,00) x RY) and for each 0 < T < co we have
lo(t,X)|| <Kr; 0<t<T, yeC[0,m0)

Where Kr is a constant depending on T, then f € M.
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Proof. By definition we have
t t
X =X, +/ b(s, X)ds +/ o(s, X)dWs;0 < t < 00; a.s.
0 0
t
/0 {]b:(s, X)| —O—Uizlj(s, X)}ds < oo as..

let S, £ infy>f{||X¢|| > n or f0t||(7(s, X)ds > n|| }. In this case, since b and ¢ are progressively measruable, then X;,g, is
a Martinagle hence X; is a semi-martinagle. Now let’s apply Ito’s formula to f(X;):

f(t,Xt):f(O,Xo)+/0t%(s, s+ Z/a (s, Xs)bi(s, X)ds + Z/ (s, Xo)d Za,] s, X)dW!)

1<i<d 1<i<d

1 t a S B}
=Y axaf (s X)d< ¥ [ ol x)dwk, ¥ /U]-,k(u,X)dWsk>

1<i<d1<j<d’0 1<k<d 0 1<k<d 0

simplify above to get

f£(,X2) = £(0,X0) +/ (5, X)ds+ Y /tastsb(sts—i- y Z/a (s, Xs) 3 (s, X)dW]

1<i<d 1<1<d1<]<d

+f Z / Sror. ax] (s, Xs) ;U,k s, X)ojk(s, X)ds

1<1]<d

So if we add the notation a;; and A}, the above equation becomes

f(t, Xt) — £(0,Xo) :/Ot aa{(s X;) ds+/ (Alfs)(Xs)ds + Y / o (s, Xs)0ij(s, X)dW/

1<i,j<d

SO M{ = Ya<ij<d fot %(s, X;)oyi(s, X)dW/ is a local Mtg with stopping time S,,.
For the second assersion,

<M, M8 > =< Y /asts)a,]stW y /angsUl]sX)dW]

1<i,j<d 1<i,j<d

Y / (s, Xs)0p(s, X)dW; >

1<]<d 1<k<d

- ¥ /(2 - (fl]sX)><Z aagkak](sX)>ds

—<Z/ sX)Ul]st
1<j<d /0 15724 9

1<j<d 1<i<d 1<k<d
d
= ) / ai(s, X (s, Xs) == 8 (s, Xs)ds
1<1]<d axk

For the third assertion, if the norm of ¢ is bounded for 0 < t < T, then the stochastic integral is defined by the
boundedness of o with either progressively measurable or the absolutely continuous of the quadratic variation of the
Brownian motion, so we do need the stopping time anymore. O

Problem (5.4.4). A continuous, adapted process W = {Wy, F;,0 < t < oo} is a d-dimensional Brownian motion if and only if

FOW) = F(Wo) — 3 [ Af(WL)ds, F0 <t < oo

is in M for every f € C*(R).

Proof. = is a direct result of Multidimensional Ito’s Formula.

<= Now suppose the defined process is a local martinagle for every f € C(IRY), then in particular, it is a local
martinagle when f(x) = x; and f(x) = x;x; for 1 <1i,j < d. Then the desried result is a derict consequence of Levy’s
characterization of Brownian motion. O
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Def (5.4.24). A collection D of Borel- Measurable functions ¢ : R? — R is called a determining class on RY if for any two finite
measures iy, pp on B(IRY), the identity

/Rd pdp = /Rd pdpz
implies yq = pa.

Problem (5.4.25). Show that the collection C(RY) is a determining class of RY.

Proof. Direct consequence of Stone-Wairstrass or Riesz Representation. O

Supplementary Exercises

Excercise (5.4.33). Assume that the coefficients b; : RY — R and 0ij R 5 R1<i<d1< j < r are measurable and
bounded on compact subsets of R%, and let A be

d d 2 d
A & 3 3 Do 350+ o 2

i
i=1

Let X = {X;, Ft,0 < t < oo} be a continuous process on some probability space (Q, F,P) and assume the filtration satisfies the
usual conditions. With f € C2(R?) and « € R, introduce the processes

t
Mi 2 f(X) = f(X0) = | Af(Xo)ds, Fii 0<t<eo
Ar2 e (X)) - f(Xo) +/ S(af (Xo) — Af(X,))ds, Fi; 0<t<oo
and show that M € M¢ & A € M1¢, If f is bounded away from zero on compact sets and

Ntéf(Xt)eXP{— Ot “L;{;}j;)ds}—f(xo), Fi, 0<t< e

then thses two conditions are also equivalent to N € MEc,

Proof. Assuming M is a local Martingale, then by the Integration by Parts formula from Problem 3.3.12 we see that
ot ot
eUF(X) = F(Xo)+ [ e () + [ F(Xe)de
t t ot
= f(Xo) + / e ¥dM;, + / e “Af(Xs)ds — oc/ e “f(Xs)ds
0 0 0

rearranging terms to get the desired result. Now for the reverse direction,
f(Xt) XO + / DCSd —lXSf + / —OLSf
t
= F(X0) + [ e - /0 nf(Xs) = Af(X)ds + o /O f(Xs)ds

and rearranging the terms to get the desired result.

For the last equivalence relation, let’s first note that the integral in exp { f ! Af Xs) ds} is defined for almost all

w € () in Lebesgue sense, so this is a stochastic process with finite variation. With that sald, let’s apply integration by
parts formula here while assuming M is a local martingale:

N o P e s
_ /Otexp {_ Os “j(j(cg{}i”)‘)du}dMs +/Ot exp {—/0 “;?Eg(xul)‘)du} Af(X,)ds
_ /Ot AF(X.) exp {— OS “‘}ngj)’)du} ds + F(Xo)
_ /Otexp{— Os “‘j‘cfzgl)‘)du}dMﬁf(Xo)

The other direction is the same thing, so omit. O
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Excercise (5.4.34). Let (X, W), (Q, F,P), {Ft} be a weak solution to the funcitonal stochastic differential equation
dX; = b(t, X)dt + o(t, X)dW,
where we assume that
Ib(ty)|| + lloijll < Kr; 0<t<T, yeC[0,0)

for all 0 < T < oo where Ky is a constant depending on T. For any continuous function f : R™ x RY — R of class
C12((0,00) x R?) and any progressively measurable process {k;, F1,0 < t < oo}, show that

Atéf(t,Xt)exp{—/Otkudu}—f(O,XO)—/Ot (Z+A;f—ksf) exp{—/oskudu}ds,]-"t; 0<t<oo

is in M1 If, furthermore, f and its indicated derivatives are bounded and k is bounded from below, then A is a martinagle.

Proof. Let’s assume we are working with the bounded case since for general case, we can define a stopping time such
that the stopped process makes all those functions bounded, or simply put, localization.
Now, from Problem 5.4.3 we see that

M £ 10,%) ~ £0,%0) - [ | L+ Alf| s x005 F, 0<i<o

is a martinagle for all f € C?((0,00) x R?) that has bounded derivatives. Therefore, once again we can use the
integration by part formula by realizing that exp < — fg kudu} is a stochastic process with finite variation when k is
bounded below, therefore,

df(t,Xt)exp{—/Otkudu} —f(t,Xt)dexp{—/Otkudu}—|—exp{—/0tkudu}df(t,Xt)
_ f(t,Xt)ktexp{ /tkudu}dtJrexp{/Otkudu}dM{

+exp{—/0tkudu} (af —i—Af) (t, Xy)dt

combine the terms we can see the desired result. O

Excercise (5.4.35). Let the coefficients b, be bounded on compact subsets of RY, and assume that for each x € R, the time-
homogeneous martinagle problem

ot
E (/) - Fv(s) — [ (AR w(u)ul5,) =0
has a solution P*. Suppose that there exists a function f : R? — [0, 00) of class C2(R?) such that

Af(x) +Af(x) <¢, VxeR4
holds for some A > 0,c > 0. Then

E*f(y(t)) < f(x)e ™M+ %(1 —eM); 0<t<ooxeR

Proof. By assumption, under IP*, the process M{ 2 f(y(t) — f(y(0)) — fot A’ f(y)ds is a martinagle with respect to the
filtration given. Now take the expectation under IP* to get

E*f(X;) = E¥ {f Xo) +/ Af( Xs)ds]
1 f(Xo) +tc— )\f(Xs)ds}

— f(x) et - / A [£(X)] ds
by Fubini since f > 0. Now apply Gronwall’s inequality to obtain
E*f(X) <
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Problem. this Consider u,6 € R, and a standard one-dim Brownian Motion W and let Wf’ = Wi+ ut;0 <t < oo. Show that
the process

t
X = / exp [(S{Wf - W'y - %(52(1‘ - s)]
0
Satisfies the Shiryaev-Roberts stochastic integral equation
t t
X; = / (1 + 61Xs)ds +5/ XsdWs.
0 0

Proof. Let iy = 6W; — $0%t + Sut, then 7 is a semi-Mtg, and note that fot exp(1s)ds is an increasing process. Therefore,
we can use Ito’s lemma, the multi-dim version. Set f(x1,x2) = exp(x1)x2, and X; = f (1, fot exp(—1s)ds), so we have

t t s 1 t
X =f(77t//0 75ds) :/0 eXp(Ws>/0 exp(—ipu )du(p — 55)5d5+/0 exp(1]s — 1]s)ds
s

1 s s t
+§(52/0 exp(iys)/o exp(iyu)duds—i-/o exp(iys)/o exp(—1u)dudWs
t t
:/ (Sstds—i-H—é/ XedW
0 0

So we are done. O

Problem (Wald’s Identity). Let {Bs} be the one-dim standard Brownian Motion, and let T be a stopping time. Show that if
either

(i) E[T] < c0

(ii) or {E[Bint]} is bounded in L!
Then we have

Proof. Note {Biz7} is also a Mtg, and if (ii) is true, then this martingale is uniformly integrable, hence has a last element.
Then by martingale convergence theorem, we have

E[Br] = lim E[B;xr] = 0
So, we can can show that (i) implies (ii), then we have the first wald’s identity. We can write Br in the following form:

[T}
|Br| =) Bt — Bx_1+ Br — B|7||
=1
L)
< Y [Bx — Bi_1| + [Br — By 1|
=1
L)
< By — By B —B
_lgo?fﬁxll K1+t — Br 1|+0fgfl§x1| 7]+t — Bl

[T]

= max |By.; — B
kgote[o,l]| k-t — Byl

[e9)

=)1 max |By.; — B
; mzkte[m]' Kt — Brl

We can do this since T(w) < oo on set of measure 1. For T(w) = oo, then the floor and ceiling are just co and we don't
have the last terms in the first three lines.

40



Note also that max;c(o 1) |Bx1+ — Bx| =4 max,c(o1) Bt — Bo| = max;e|g1] | Bt|, therefore, we have

E|Br| < E[)_ Ir>k max |By s — Byl]
=0 tel0,1]

= Z E[17>, max |B; x — Bi|] Fubini, since positive
k=0 - E[O,l]

= ) P[T > k|E[max |B; 4 — B]
k=0 te[(),l]

— Y P[T > k|E B; — B
k;o [T > K] [tren[gff]It ol]

= [E[max |B; — By|] i]l’[T > k]

te[O,l] k=0
= E[max |B¢|]E[T] < 0
t€[0,1]

The finiteness is due to the identity P[maxg<¢<7 B; > a| = 2IP[B; > a| and maxg<;<7 B > 0 a.s. and
E[X] :/ P[X > a]dx
0

Note that E[|Bis7|] is bounded above by the above, hence it is uniformly integrable.
Now for the second identity. Let M; = B% —tisaMtg, and S, = T, A T is a stopping time, where T,, = min;{|B;| =
n}. Therefore, Mg, is also a mtg. Observe that

|Bxs, — t A Su| < n®+ T which is integrable
So by Optional Sampling we have
E[T, NT] = IE[B%"AT]
Note that we have T, AT < T, Take the n — oo, the left side becomes IE[T] by DCT. Now consider the following
E[B}] = E[(Br — Bs, + Bs,)”]
= E[(Br — Bs,)?] + 2E[(Br — Bs, )Bs,] + E[B§ |

Note that by Strong Markov Property, (B; — Bg,) L Sg, is another Brownian Motion. So by the first Wald’s Identity, we
have E[Br — Bg,| = 0, hence the middle term is zero, therefore, we obtain the identity

E[B?] = E[(Br - Bs,)?] + E[BS, ] > E[B; |
Therefore, limy,_sc ]E[B%n] < E[B%]. Since limy, o B, (@)AT(w) (@) = Br(y)(w)a.e., then by Fatou’s Lemma, we have
E([B2] < liminfE[Bg, | = liminf E[T, A T] = E[T]
By DCT or MCT. So we are done. O

Problem (3.3.35 More General Wald’s Lemma). In the context of Wald’s Lemma (problem above), but now under the condition
E[/T] < oo, establish the Wald's Identity

E[Wr] =0, E[Wf] = E[T]
Proof. By Mtg Moment Inequality, we have
E[|Binr|] < CE[VT At] < C'E[VT]

For some C' finite. Therefore, |B;17| is bounded in L', hence uniformly integrable. Hence we can use Mgt Convergence
theorem to take t — oo, we we have the first identity.

For the second identity, note that IE[/T] < oo still gives the condition that T < oo a.s, so the argument above follows
exactly the same. But for exercise, I'll try to reproduce the same argument:
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Let T, be the hitting time of |B;| = n, hence limy, o Br,oT = Br at least a.s. and consider

[E[B%] = E[(Br — Br, AT + Br,n1)?]
= E[(Br — Br,1)*] + E[(Br,AT)?] + 2E[(BT — B, AT) BT, AT)]

By the strong Markov property, Br,ar++ — Br,AT is an Brownian Motion that is independent of By, A7, and by the
first Wald’s identity, we have E[Br — By, n1] = 0, hence the last term vanishes. Therefore, we have E[B2] = E[(Br —
Br,a1)?] + E[(BT,AT)?]- SO limy_sc0 IE[B%H/\T] < E[B2]. However, by Fatou’s Lemma we also have

E[Br] < liminfE[Br, 7] = liminfE[T, A T] = E[T]
The last equality is because B%n A+ — Tn Atisbounded in L!, hence uniformly integrable + Mtg Convergence theorem. [J

Problem (excercise 3.3.36 (M. Yor)). Let R be a Bessel process with dim d > 3, starting at r = 0. Show that {M; & ;1<

Rd 27
t < oo}

(i) Is a local Mtg;

(ii) Satisfies sup; ;. E[M!] < co forall 0 < p <gz 2 (and thus is uniformly integrable);

(iii) Is not a martingale.

Proof. (i) Need to find {T,} that increases to co a.s. such that M;,, are martingales for all n. Ito’s lemma might be a
good way to go, but R; might be zero, so if those stopping time can bound it away from zero, then it might work. Let

f(x) = ﬁ = ﬁ and let’s x is bounded away from zero, then
(T )2

of  (2-d)x; B x? 1
ax e e = W DU~ @2 )

So apply Ito’s Lemma we have

B d t Wk p 1 (Wk)2 1
z\4tz\41+k_21(z—d)/1 des+2£/l(d 2) @iz — (= 2) s

i( ) f W;C k
=M+ Y (2-d / 5w
k=1 L (Ti (Whdr2m e

which is definitely a mtg. So only need to find the stopping time, T,, = [,{M; > 1} would work.
(ii) From the Mtg Moment Inequality, we have

E[M!] < E[< M >F] = (2 — ) E [/;(Zd.ds}

O

Problem (5.4.33). Assume b;,0;; : R? — R for 1 < i,j < d are measurable and bounded on compact sets of R, and let A be
associated operator

i f (%) (x)
bl
lSi,de axzax] 1<§d ax,

Let X = {X;, F;,0 < t < oo} be a continuous process on some prob space (¥, F,P) and assume F; satisfies the usual conditions.
With f € C2(R?) and a« € R, introduce the process

M; £ f(Xt) —f(Xo) — /Ot Af(Xs)dS, Fr,0<t <
and

A2 e (X)) — f(Xo) — /0 LS (wf(Xe) — Af(X,)ds, Fi,0 < t < inf
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and show that M € M%1¢ & A € MO°¢. If f is bounded away from zero on compact sets, and

FAf(Xs)
f(Xs)

then these two conditions are also equivalent to N € M (Hint: from the integration by parts formula we have if M € Mo
and Cy is a continuous process of bounded variation, then C;M; — fot MdCs = fot Csd M is in Mcoc.)

Ntﬁf(Xt)exp{— ; ds}—f(Xo),ft,0§t<oo

ot

Proof. First assume M; be a local martingale, and let C; = e™*" and use the hint:

MiCr = e £(X;) — e f(Xo) — e /0 CAf(X.)ds

and

/Ot M;dCs = —a /Ot Y f(Xs) —e ¥ f(Xg)—e ™™ /Os Af(X,)duds
So we have a representation of the following martingale:

/Ot e dMs = e M f(Xs) —e M f(Xg) —e ™ /Ot Af(Xs) +a {e“sf(Xs) —e % f(Xp) —e™™ /OS Af(Xu)du} ds
Here we assume WLOG that f(Xy) = 0, then
/(; LM, — (X, — et /0 " AF(X.)ds + /O Lo f(X)ds — a /O t /0 T AF(X,)duds
Now consider the double integral
t s ot
a/o /0 e “Af(Xy)duds = a/o /u e “Af(Xy)dsdu
_ /O et A F (X, ) — /O Lot AR (X, )du

Now change u to s and replace the double integral we have fot e~ *dM; = Ay, hence a local martingale.
Now let’s say A; is a local martingale, by assuming f(Xp) = 0 and letting C; = e, we have:

ACr = f(Xy) — e /Ote_"‘szxf(Xs) —e “Af(Xs)ds

/Ot AgdCs = a /Otf(Xt) — e /OS e MMaf(Xy) —e "MAf(Xy)duds

Again, consider the double integral
/Ot /OS we® ™ (af (Xy) — Af(Xy)) duds

= [ [ aes o (af() - AF (X)) dsd

=t [ (wf(X) — AR ds — [ (afX) — AF(X0) s
But this back into the original expression, then we have

M= ACi— | ' A,

which is also a local martingale. Note that the equivalent relation is true for all « € R.
Now let f(x) > 74 > 0 where A C R is compact.

Some observations:
FAf(Xs) I PAF(Xs) , | Af(Xe)
deXp{‘ 0 F(X) ds} p{ 0 F(X) ds} o)
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tAF(X,)

f(Xs)
B*, B~. We can write the integral as fot B ds — fot B~ ds, the difference between two pathwise nondecreasing processes,
so derivative with respect to time makes sense. Now recall the integration by part formula: If X; = X + M; + B; and
Y; = Yy + N; + C;, where M, N € M€ and B, C are continuous adapted processes with bounded variation with initial
values zero, then we have

in Lebesgue’s sense. For [ ds, we can decompose the integrand into positive and negative parts, call them

/Ot XY, = X,Y5 — XoYo — /Ot YedXs— < M,N >
Note this also gives us a differential form for Product Rule, that is
A(XsYs) = XsdYs + YsdXs +d < M, N >;
Now, let Y; be the exponential term, then using the product rule, we have the following;:
d[f(Xe)Yi] = Yedf(Xp) + f(X)dYe

—Yd (Mt " /Ot Af(Xt)) —f(Xt)(“jcfzgf)t)Ytdt)

= Y dM; + Yt.Af(Xt)df — .Af(Xt)dt
= YdM;

tAf

which gives a local Martingale. Now, suppose N; = f(X;) exp { f } be a local martingale. So the goal is to

turn M; = f(X¢) — fot Af(Xs)ds into some form of Z;dN;. We have
dM; = df(Xt) — .Af(Xt)di’

_ FAf(X)
= dNyexp { 0 FOX0)

(
_ FAS(X) FAF(X) | AF(X)
= { [ oy g+ [ F ) g o Arcom
= exp { tAf X:) }dNt+f Xt) Af(Xt)dt—Af(Xt)

f(X)
= exp {OtAf

Hence also a Martingale. O

b - arx

AN}

Problem (5.4.34). Let (X, W), (Q),,F,IP), Fibe a weak solution to the functional stochastic differential equation
dX; =b(t, X)dt + o (t, X)dW

where condition [|b(t,y)|| + |lo;;(t,y)|| < Kt wherey € C[0,0)? hold for all T > 0, where Kr is a constant depending on T.

For any continuous function f : [0,00) x R? — R of class C'? and any progressively measurable process {k;, F;,0 < t < oo},
show that

At 2 F(t, X)) exp { /Ot kudu} — £(0,Xo) — /Ot (g{: FAf— k5f> exp=Ji kudt g

with Fy is in M1°¢. If, furthermore, f and its indicates derivatives are bouned and k is bouneded from below, then A is a
martingale.

Proof. Again, assume WLOG that f(0,Xp) = 0. From problem 4.3 we have M{ is a martingale for all f € C'2?, where
M{ is defined as follows:

M{ éf(t,Xt) - /Ot [E;jsf +A;f(S,XS)} (s, Xs)ds

when k; is progressively measurable (I am not sure why progressively measurable is important), as before, the expo-
nential term has finite variation, where we have

dA; = exp {— /Ot kudu} df (LX) — F(t, Xp) exp {— /Ot kudu} kedt — (?){(t Xp) + ALF (LX) — kef (2, xt)> exp {— /Ot ksds} dt
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Where df (t, X;) = dM{ + (%(t, Xt) + Ajf(t,X¢))dt. Let’s omit the arguments of functions for convinience, and let
Y: = exp {— fot kudu}. Therefore

d d
ANy = Yth{ + |:Yta{ + Yt.A;f:| dt — fYtktdt — ?{Yt - ;fYtdt + kthtdi’

= Yidm/

which is a local martingale. If we have the boundedness condition, then also by problem 5.4.3, we have M{ is a
martingale, hence A; is a martingale as well. O

Problem (5.4.35). Let the coefficients b, o be bouned on compact subsets of RY, and assume that for each x € RY, the time
homogeneous martingale problem of Def 4.15 has a solution P~ satisfying (4,22). Suppoes that there exists a function f : R? —
[0, 0) of class C?(IRY) such that

Af(x) +Af(x) <cVx e RY

holds for some A > 0 and ¢ > 0. Then
EX[f(y()] < f(x)e M+ T(1—e M) 0<t <o x e R

Proof. Being a solution of time homogeneous martingale problem, we have
-t
E | f(y() = f(y(s)) = /s Af(y(u))du|Bs | =0 Pa.s.

and P*[y(0) = x] = 1. So f(X;) — fot Af(Xs)ds is a martingale where X; is the coordinate mapping process of
continuous function in R?. Assume WLOG that f(x) = 0, and denote E*[f(X;)] as Z, then we have the following

7, = E[M/ +/; Af(Xs)ds]
= Bl [ Af(x)as
< E[/O't et — Af(Xs)ds]

t
=ct — /\/ Zsds Fubini’s since f > 0
0

Then by Gronwall’s we have
Zi < cte M < %(1 — e*M)

Not sure how to prove the last inequality, but it is true. O

Problem (5.7.3). Let A be elliptic in the open bounded domain D, and k,g : D — R and f : 9D — R Let u be the solution fo
the Dirichlet problem:

Au—ku = —g;inD
u = f; on oD

Let Tp £ inf{t > 0;X; ¢ D}. If
E*tp < oo;Vx € D

Show that under (7.2)-(7.4), we have

u(x) = B [f(XTD)exp {—/OTD k(Xs)dS} +/0

™

g(X¢)exp {— ./OTD k(Xs)ds} dt}

for every x € D.
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Proof. First, X;, P, F; is a weaks solution of
X = x4 /t Tp(x )0 + /t To(x ) aw,
I think this problem assumes t = 0, hence its just a usual SDE, hence it omit a class of martingales for any u € C1%:
M} = u(Xs) —u(x /.Aqu
since IP(X() = x a.s. Hence
du(X;) = MY + /Ot Au(X,)ds
this is due to Prop 4.11. Therefore, by the integration by parts formula we have:
du(X;) exp {— /(;tk(Xs)} = exp {— ./O'tk(Xs)} du(X;) — k(X:) exp { /
= exp {— /Otk(Xs)} dM} —I—exp{ } Au(Xy)dt — k(Xp)u(Xy)] dt
:exp{—/otk(Xs)}de—exp{ }

Integrate both sides from 0 to T A T and take expectation to get

E [ur)exp = [ k() Y] —u) =B [= [T exp L= [Tk(x) b g(x.)ds
J J J

By bounded convergence theorem, take T — oo to get the desired result. O

'tk<xs>} (Xy)dt

8(X

Problem (5.7.7). In the case of bounded coefficients, i.e.

tx|—|—2 (t,x) <p,0<t<oo,xcRI,1<i<d

Show that the polynomial condition (7.14) in Theorem 7.6 may be replaced by

max |v(t, x)| < MetII? x e RY
0<t<T

for some M > 0and 0 < y < 50Td (Hint: Use problem 3.4.12)

Proof. Hint says if Xy = x + M; + C; where M; € MEoc C, a continuous process with bounded variation, and if
|Ct|+ < My >< pt, then for fixed T and large n we have

2
> <
r [or?% | Xi] ”} P { 180T }

so the proof is exactly the same, but use the result of the hint problem instead of Chebyshev’s inequality. O

I am done with the first read!
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