
1.1-1.2

Problem (1.1.5). Let Y be a modification of X, and suppose both processes have a.s. right-continuous sample paths. Then X, Y
are indistinguishable.

Proof. Let N = Q+ ⊆ R+, which is a dense subset, then P[Xtn = Ytn , tn ∈ A] = 1. Call the set in the argument Ω. Let
ω ∈ Ω, and t ∈ R+ be arbitrary. Then there exists {tn} ⊆ N such that Xt(ω) = limtn→t+ Xtn(ω) = limtn→t+ Y(ω)tn =
Y(ω)t. Hence Xt(ω) = Yt(ω) for all t ≥ 0 for all ω ∈ Ω. QED.

Problem (1.1.7). let X be a process, every sample path of which is RCLL (i.e., right-continuous with finite left-hand limit). Let A
be the event that X is continuous on [0, tn). Show that A ∈ FX

t0
.

Proof. Let A be the above set, question is what characterizes continuity?

{Xt continuous on [0, t0)} =
⋂

n∈N

⋃
δ∈Q+

⋂
x,y∈[0,t0)∩Q+ ,|x−y|<δ

{|Xx − Xy| <
1
n
}

where {|Xx − Xy| < 1
n} ∈ Ft0 for x, y < t0 and we have only countable union and intersections above, so A ∈ Ft0 .

Problem (1.1.8). Let X be a process whose sample paths are RCLL a.s. and let A be the event that X is continuous on [0, t0).
Show that A can fail to be in FX

t0
, but if the Ft is that FX

t ⊆ Ft and Ft is complete under the probability measure P, then A ∈ Ft0 .

Proof. Let B be the set for which Xt(ω) is not right continuous or has no left limit. Then Ac = {Xt− ̸= Xt} ∩ {Xt−
exists} ∪ {Xt not right continuous for some t} ∪ {Xt− does not exist for some t}, where {Xt− exists}, {Xt not right
continuous for some t}, {Xt− does not exist for some t} where t < t0 are all null sets since they are subsets of B.
However, we do not konw if they are measurable. However, if FX

t0
is complete under P, the the arguments of the

previous problem would work exactly same with those null sets in FX
t0

.

Problem (1.1.10). Let X be a process with every sample path LCRL (i.e. left-continuous on (0, ∞) with right hand limit on
[0, ∞)), and let A be the event that X is continuous on [0, t0]. Let X be adapted to a right-continuous filtration {Ft}. Show that
A ∈ Ft0 .

Proof. Not sure why we need the right continuity, but anayway, A is the set where Xt(ω) is uniformly continuous on
[0, t0]:

A =
⋂

n∈N

⋃
δ∈Q+

⋂
t1,t2∈[0,t0]∩Q+ ,|t1−t2|<δ

{|Xt1 − Xt2 | <
1
n
}

Problem (1.1.16). If the process X is measurable and the random time T is finite, then the function XT is a random variable.

Proof. X measurable means Xt(ω) ∈ F × B(R+). T ≤ a < ∞ insures XT is defined for all ω, then composition of
measurable function is measurable.

Problem (1.1.17). Let X be a measurable process and T a random time. Show that the collection of all sets of of the form {XT ∈ A}
where A ∈ B(R) together with the set {T = ∞}, forms a sub-σ-field of F . We call this σ-field generated by XT .

Proof. First, {T = ∞} ∈ F since T takes values on the extended positive real line, then by previous problem, we are
done.

Problem (1.2.2). Let X be a stochastic process with T a stopping time of {FX
t }. Suppose for some ω, ω′ ∈ Ω, we have

Xt(ω) = Xt(ω′) for all t ∈ [0, T(ω)] ∩ [0, ∞). Show that T(ω) = T(ω′).

Proof. Hint from: https://math.stackexchange.com/questions/625580/equality-of-value-implies-equality-of-stopping-time
First show ω′ ∈ {T ≤ T(ω)}: The collection C of subsets A ⊆ Ω such that 1A(ω) = 1A(ω

′) forms a σ-field. Suppose
Xt(ω) = Xt(ω′) for all t ∈ [0, T(ω)], and let B ∈ B(R), then X−1

t (B) ∈ C for all t ∈ [0, T(ω)], hence σ(Xt) ∈ C, hence
σ(Xt; 0 ≤ t ≤ T(ω)) = FX

T(ω) ⊆ C. Therefore, ω′ ∈ {T ≤ T(ω)} ∈ FX
T(ω). Then the same arugument show that other

inclusion, hence we are done.

For next two problem:
Let X be stochastic process with right-continuous paths, which is adapted to a filtration {Ft}. Consider a subset
Γ ∈ B(Rd) of the state space of the process, and define the hitting time:

HΓ(ω) = inf{t ≥ 0 : Xt(ω) ∈ Γ}
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Problem (1.2.6). If Γ is open, show that HΓ is an optional time.

Proof. For simplicity, call HΓ to be T. By definition of the hitting time, if T(ω) = s < t, then ∀δ ≥ 0, Aδ = {Xt(ω) : s ≤
t ≤ s + δ} ∩ Γ ̸= ∅, let Xtδ

(ω) ∈ Aδ. Since Γ is open, for all ϵ > 0, we have B = B(Xtδ
(ω), ϵ) ⊆ Γ. By right continuity,

there exists γ > 0 such that {Xt : tδ ≤ t ≤ tδ + γ} ⊆ B, where γ can be arbitrarily small. Therefore, for all δ > 0, there
exists z ∈ [s, s + δ) ∩ Q+ such that Xz(ω) ∈ Γ, in other words, z can be taken to be less than t. Therefore, we have the
following

{T < t} = ∪s∈[0,t)∩Q+{Xs ∈ Γ}

since the ⊃ is obvious and ⊆ is proven above, then {Xs ∈ Γ} ∈ Ft0 , so is the countable union, hence we are done.

Problem (1.2.7). If the set Γ is closed and the sample paths of the process X are continuous, then HΓ is a stopping time.

Proof. Let Γn = {x ∈ Rn : dist(x, Γ) < 1
n}, which is open, and Tn be the hitting time of Γn which is an optional time

from the previous problem. By continuity, Tn → HΓ pointwise from below.
Can we say {HΓ ≤ t} = limn→∞{Tn < t}? No, at least not at this point.
Note if HΓ(ω) = 0 ⇐⇒ Tn(ω) = 0∀n.

For t ̸= 0 we have HΓ(ω) ≤ t ⇒ limn→∞ Tn(ω) ≤ t ⇐⇒ Tn(ω) < t for all n ≥ 1. Therefore, for t > 0, we have

{T ≤ t} =
⋂

n∈N

{Tn < t} ∈ Ft

The answer key says Tn → T is not obvious, so let’s show it. Let’s consider any particular path, so everything
above is fixed and not random. Since Tn is bounded above and nondecreasing, since it converges to some H. Then
XH ∈ ⋂n∈N Γn = Γ. Now, if H < T, then we’d have a contradiction.

Problem (1.2.10). Let T, S be optional times; then T + S is optional. It is a stopping time if one of the following conditions holds:

(i)T > 0, S > 0;
(ii)T > 0, S is a stopping time

Proof. For the first part, we can do the following decomposition:

{S + T ≥ t} = {S ≥ 0, T ≥ t} ∪ {T ≥ 0, S ≥ t} ∪ {0 ≤ S ≤ t, S + T ≥ t} ∪ {0 ≤ S ≤ t, S + T ≥ t}

The first two sets are in Ft, and we only need to show one of the fourth and third set is in Ft. So consider the third set

{0 ≤ S ≤ t, S + T ≥ t} =
⋂

n∈N

{0 ≤ S ≤ t +
1
n

, S + T ≥ t}

=
⋃

r∈{0}∪Q+∩[0,t]

⋂
n∈N

{r ≤ S < t +
1
n

, S + T ≥ t}

=
⋃

r∈{0}∪Q+∩[0,t]

⋂
n∈N

{r ≤ S < t +
1
n

, s + T ≥ t}

∈ Ft

Therefore, it is a optional time.
(i) From Lemma 2.9 we have

{T + S > t} = {T = 0, S > t} ∪ {T > t, S = 0} ∪ {T ≥ t, S > 0} ∪ {0 < T < t, T + S > t}
= {T ≥ t} ∪ {T < t, T + S > t}

Where the first set is already in Ft, so let’s consider the second one:

{0 < T < t, S + T > t} =
⋃

r∈Q+∩(0,t)

{r ≤ T < t, S + r > t}

=
⋃

r∈Q+∩(0,t)

⋃
n∈N

{r ≤ T < t, S + r ≥ t +
1
n
}

which is an element of Ft.
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(ii) Now assume T > 0 and S is stopping time, we stil use the same decomposition:

{T + S > t} = {T = 0, S > t} ∪ {T > t, S = 0} ∪ {T ≥ t, S > 0} ∪ {0 < T < t, T + S > t}
= {T > t, S = 0} ∪ {T ≥ t} ∪ {T < t, T + S > t}

first and second sets are in Ft. We can rewrite the last set as

{0 < T < t, S + T > t} =
⋃

r∈Q+∩(0,t)

{r ≤ T < t, S + r > t}

which is in Ft.

Problem (1.2.13). Verify that FT is actually a σ-field and T is FT measurable. Show that if T(ω) = t for some constant t ≥ 0
for all ω ∈ Ω, then FT = Ft.

Proof. Recall that FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft}. Obviously, it is closed under countable internsections:⋂
n∈N An ∩ {T ≤ t} =

⋂
n∈N(An ∩ {T ≤ t}) ∈ Ft. Now let A ∈ FT , consider

Ac ∩ {T ≤ t} = (Ac ∩ {T ≤ t}) ∪ ({T ≤ t} ∩ {T > t})
= (Ac ∩ {T > t}) ∩ {T ≤ t}
= (A ∩ {T ≤ t})c ∩ {T ≤ t}

Now, σ(T) is generated by T−1((−∞, t]) ∈ FT , hence the generated σ algebra is also a subset of FT .
Finally, let T ≡ t, then {T ≤ t} = Ω, and if A ∈ FT , then A ∩ Ω = A ∈ Ft so FT ⊆ Ft. For the other direction, if

A ∈ Ft, then A ∩ {T ≤ t} = A ∈ Ft, so we are done.

Excercise (1.2.13). Let T be a stopping time and S be a random time such that S ≥ T on Ω. If S is FT measurable, then S is also
a stopping time.

Proof. Here we need to show {S ≤ t} ∈ Ft for all t ≥ 0, however, we have {S ≤ t} ∩ {T ≤ t} ∈ Ft, but {S ≤ t} ⊆ {T ≤
t}, so we are done.

Problem (1.2.17). Let T, S be stopping times and Z be an integrable random variable. We have

(i)E[Z|FT ] = E[Z|FS∧T ], P-a.s. on {T ≤ S}
(ii)E[E(Z|FT)|FS] = E[Z|FT∧S], P-a.s.

Proof. (i) From Lemma 1.2.16 we have that {T ≤ S} or vice-versa (not sure if I spelled it right) is in FT∧S, and from
Lemma 1.2.15 we have FT∧S ⊆ FT . let A ⊆ FT∧S, and consider∫

A∩{T≤S}
E[Z|FT ]dP = E[Z1A∩{T≤S}] =

∫
A∩{T≤S}

E[Z|FS∧T ]dP

Now, let A ∈ FT and consider A ∩ {T ≤ S}, if we can show it is in FS∧T , then we are done. However, we have

A ∩ {T ≤ S} ∩ {S ∧ T ≤ t} = A ∩ {T ≤ S} ∩ ({S ≤ t} ∪ {T ≤ t})
= (A ∩ {T ≤ S ≤ t}) ∪ (A ∩ {T ≤ S} ∩ {T ≤ t})

where the second part is in Ft. For the first part we have

A ∩ {T ≤ S ≤ t} = A ∩

 ⋃
r∈Q+∩[0,t]

{T ≤ r} ∩ {r ≤ S ≤ t}


which is in Ft, so we are done.

(ii) E[Z|FS∧T ] = E[E(Z|FT)|FT∧S] = E[E(Z|FT)|FS] on {S ≤ T}. On {T ≤ S} we have E[E(Z|FT)|FS] =
E[E(Z|FT∧S)|FS] = E[Z|FT∧S].

Problem (1.2.19). Let Xt,Ft be progressively measurable process and T be a stopping time and f (t, x) : [0, ∞)× Rd → R is a
bounded B([0, ∞))⊗ B(Rd)-measurable function, show that the process Yt =

∫ t
0 f (s, Xs)ds; t ≥ 0 is progressively measurable

with repsect to Ft, and YT is an FT measurable random variable.
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Proof. By Proposition 1.1.13, we only need to show Yt is adapted. Fix s ≥ 0, then f (s, x) → R is B(Rd) measurable,
and ω → Xs(ω) : (Ω,Ft) → (Rd,B(Rd)) measurable, hence the composed function f (s, Xs(ω)) is Fs measurable. This
is true for any R ⊗ Rd,B(R+)⊗ B(Rd) measurable function. Then by Fubini’s theorem, ω →

∫ t
0 f (s, Xs(ω))ds is also

in Ft.
First we have (s, ω) → Xs(ω) : {[0, t]⊗Ω;B([0, t])⊗Ft} → Rd ⊗B(Rd) is measurable. For the second part we need

to show for any B ∈ B(Rd), we have {YT ∈ B} ∩ {T ≤ t} ∈ F . By Proposition 1.2.18, we know YT∧t is progressively
measurable. so

{YT ∈ B} ∩ {T ≤ t} = {YT∧t ∈ B} ∩ {T ≤ t} ∈ Ft

Problem (1.2.21). Verify that the class FT+ is indeed a σ algebra with respect to which T is measurable, that it coincide with
{A ∈ F ; A ∩ {T < t} ∈ Ft, ∀t ≥ 0}, and that if T is a stopping time (so that both FT ,FT+ are defined), then FT ⊆ FT+ .

Proof. Recall FT+ consists of the sets A s.t. A ∩ {T < t} ∈ Ft+ , since Ft+ itself is a σ-algebra, hence
⋂

n∈N An ∩ {T <
t} =

⋂
n∈N(An ∩ {T < t}) ∈ Ft+ , and it is obvious that T ∈ FT+ for T is a optional.

Now suppose T is a stopping time, and let A ∈ FT , then A∩{T < t} = A∩⋃n=1{T ≤ t− 1
n} =

⋃
n=1

(
A ∩ {T ≤ t − 1

n}
)
∈

Ft ⊂ Ft+

Problem (1.2.22). Verify that analogues of Lemma 2.15 & 2.16 holds if T and S are assumed to be optional and FT ,FS and
FT∧S are replaced by FT+ ,FS+ and F(T∧S)+ , respectively. Prove that if S is an optional time and T is a positive stopping time
with S ≤ T, and S < T on {S < ∞}, then FS+ ⊆ FT .

Proof. Let A ∈ FS+ NTS that A ∩ {S ≤ T} ∈ FT+ :

A ∩ {S ≤ T} ∩ {T < t} = (A ∩ {S < t} ∩ {T < t}) ∩ {T ∧ t ≤ S ∧ t}

Now consider the last set

{T ∧ t ≤ S ∧ t} =
⋃

t∈Q+∩[0,t]

{T ∧ t ≤ r} ∩ {r ≤ S ∧ t} ∈ Ft+

This also means FT+ ⊂ FS+ if S ≥ T.
Now need to show FS+ ∩FT+ = F(S∧T)+ : (⊃) relation is obvious from ealier argument. Now let A ∈ FS+ ∩FT+ =⇒

A ∩ {S ∧ T < t} = A ∩ {S < t} ∩ {T < t} ∈ Ft+ . I will not show the rest since they are pretty standard.
For the last part, let A ∈ FS+ so A ∩ {S < t} ∈ Ft+ .

A ∩ {T ≤ t} = ∪r∈Q+∩(0,t)A ∩ {S < r < T ≤ t}

Problem (1.2.23). Show that if {Tn}n∈N is a sequence of optional times and T = infn≥1 Tn, then FT+ =
⋂∞

n=1 FT+
n

. Besides, if
each Tn is a positive stopping time and T < Tn on {T < ∞}, then we have FT+ = ∩∞

n=1FTn .

Proof. By assumption, T is of course an optional time, since we have T ≤ Tn, we also have FT+ ⊆ FT+
n

for all n ≥ 1,
hence it is also a subset of the intersections. Now suppose A ∈ ⋂n∈N FT+

n
, so

A ∩ {Tn < t} ∈ Ft+ ∀n ∈ N.

Conisder

A ∩ {T < t} = A ∩
⋃

n∈N

{Tn < t}

=
⋃

n∈N

A ∩ {Tn < t} ∈ Ft+

Now suppose Tn’s are positive stopping times, then by Problem 1.2.22, we have FT+ ⊂ ⋂
n∈N FTn . Let A ∈ ⋂n∈N FTn ,

we have

A ∩ {T < t} = A ∩
⋃

n∈N

{Tn < t} ∈ Ft
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Problem (1.2.24). Given an optional time T of the filtration {Ft}, consider the sequence {Tn}n∈N of random times given by

Tn(ω)

{
T(ω); on {ω : T(ω) = ∞}
k

2n ; on {ω : k−1
2n ≤ T(ω) < k

2n }

for n ≥ 1, k ≥ 1. Obviously Tn ≥ Tn+1 ≥ T for every n ≥ 1. Show that each Tn is a stopping time, that limn→∞ Tn = T, and
that for every A ∈ FT+ we ahve A ∩ {Tn = k

2n } ∈ F k
n22

, n, k ≥ 1.

Proof.

{Tn ≤ t} = {T < max
k∈N

{ k
2n :

k + 1
2n < t}} ∈ Ft

hence they are all stopping times. For each ω ∈ Ω, for all ϵ > 0, there exists n ≥ 1 such that 1
2n < ϵ with Tn(ω)−T(ω) =

k
2n − T(ω) ≤ 1

2n for some k ≥ 1, hence we have the convergence. Now suppose A ∈ FT+ , consider

A ∩ {Tn =
k

n2 } = A ∩ { k − 1
n2 ≤ T <

k
2n } ∈ F k

n2
.

1.3 Continuous-Time Martingales

Problem (1.3.2). Let T1, T2, ... be a sequence of independent, exponential distributed random variables with parameter λ > 0:

P[Ti ∈ dt] = λe−λtdt, t ≥ 0

Let S0 = 0 and Sn = ∑n
i=1 Ti; n ≥ 1 ( We may think of Sn as the time at which the n-th customer arrives in a queue, and of the

random variable Ti, i ∈ N as the interarrival times.) Define a continuous-time, integer valued RCLL process

Nt = max{n ≥ 0; Sn ≤ t}; 0 ≤ t < ∞

(We may regard Nt as the number of customers who arrive up to time t.)
(i) Show that for 0 ≤ s < t we have

P[SNs+1 > t|FN
s ] = exp(−λ(t − s)), a.s.P

(Hint: Choose Ã ∈ FN
s and a nonegative integer n. Show that there exists an eventA ∈ σ(T1, ..., Tn) such that A ∩ {Ns = n} =

Ã ∩ {Ns = n}, and use independence between Tn+1 and the pair (Sn, 1) to establish∫
Ã∩{Ns=n}

P[Sn+1 > t|FN
s ]dP = exp(−λ(t − s))P[Ã ∩ {Ns = n}])

(ii) Show that for 0 ≤ s < t, Nt − Ns is a Poisson random variable with parameter λ(t − s), independent of FN
s . (Hint: with

Ã ∈ FN
s and n ≥ 0 as before, use the result in (i) to estabilish

∫
Ã∩{Ns=n}

P[Nt − Ns ≤ k|FN
s ]dP = P[Ã ∩ {Ns = n}] ·

k

∑
j=0

exp(−λ(t − s))
(λ(t − s))j

j!

for every integer k ≥ 0.)

Proof. (i) Use the hint and the solution, consider TN(s) = ”FN
s |{Ns = n}”, recall that FN

s = σ(Nt; 0 ≤ t ≤ s), so TN(s)
is generated by the family of sets of the form

{Ns1 < n1, ..., Nsk < nk, Ns = n}; 0 ≤ s1 ≤ ... ≤ sk ≤ s

Similarly, consider ST(s) = σ(T1, ..., Tn)|{N = n} which is generated by the sets of the form {T1 ≤ t1, ..., Tn ≤ tn, Ns =
n} where ∑n

k=1 tk ≤ s, or

{S1 ≤ t1, ..., Sn ≤ tn, Ns = n} 0 ≤ t1 ≤ ... ≤ tn ≤ s.
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Note that {Nt ≥ k} = {Sk ≤ t}, hence TN(s) = ST(s) since they have the same generating sets. Therefore, for all
Ã ∈ FN

s ∩ {Ns = n}, there exists A ∈ σ(T1, .., Tn) ∩ {Ns = n} such that Ã = A. Now conisder∫
Ã∩{Ns=n}

P[Sn+1 > t|FN
s ]dP = P[Sn+1 > t ∩ A ∩ {Ns = n}]

Proof needs to be filled
= P[Sn + Tn+1 > t ∩ A ∩ Sn ≤ s < Sn+1]

=
∫ ∞

t−s
P[Sn > t − u, A, Sn ≤ s]λe−λudu

= e−λ(t−s)
∫ ∞

0
P[Sn > s − u, A, Sn ≤ s]λe−λudu

= e−λ(t−s)P[Sn + Tn+1 > s ≥ Sn, A]

= e−λ(t−s)P[Ns = n ∩ Ã].

Now sum over all n’s to get the desired answer.
(ii) Use the hint:∫
Ã∩{Ns=n}

P[Nt − Ns ≤ k|FN
s ]dP = P[A ∩ {Ns = n} ∩ Nt − Ns ≤ k]

= P[A ∩ {Ns = n} ∩ Nt < k + n + 1]
= P[A ∩ {Ns = n} ∩ Sk+n+1 > t]

= P[A ∩ {Ns = n} ∩ Sn+1 +
n+k+1

∑
j=n+2

Tj > t] let Z be the summation

= P[A ∩ {Ns = n} ∩ Sn+1 > t − Z]

=
∫ ∞

0
P[A ∩ {Ns = n} ∩ Sn+1 > t − u]P[Z ∈ du]

=
∫ ∞

0
P[A ∩ Sn ≤ s, Sn+1 > s, Sn+1 > t − u]P[Z ∈ du]

=
∫ t−s

0
P[A ∩ Sn ≤ s, Sn+1 > t − u]P[Z ∈ du] + P[A ∩ Sn ≤ s, Sn+1 > s, Z ≥ t − s]

=
∫ t−s

0
P[A, Sn ≤ s, Sn+1 > t − u]dP[Z ∈ du] + P[A, {Ns = n}]P[Z ≥ t − s]

Note that sume of exponential r.v.’s has gamma distributions, that is P[Z ∈ du] = [λu]k−1

(k−1)! λe−λu and

P[Z > θ] =
k−1

∑
j=0

(λθ)j

j!
e−λθ

So the above is equal to∫ t−s

0
P[A ∩ {Ns = n}, Sn+1 ≥ t − u]dP[Z ∈ du] + P[A, {Ns = n}]P[Z ≥ t − s]

=
∫ t−s

0
P[A ∩ {Ns = n}]P[Tn+1 > t − s − u]P[Z ∈ du] + P[A, {Ns = n}]P[Z ≥ t − s]

Then put everything together, we have the desired result. still a bit unsure about the last equality

Problem (1.3.4). Prove that a compensated Poisson process {Mt,Ft; t ≥ 0} is a martingale.

Proof. let t ≥ s and consider

E[Mt − Ms|Fs] = E[Nt − Ns + λ(t − s)|Fs]

= E[Nt − Ns]− λ(t − s) = 0
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Problem (1.3.7). let {Xt = (X(1)
t , ..., X(d)

t ) ∈ Rn,Ft; 0 ≤ t < ∞} be a vector of martingales, and φ : Rd → R a convex function
with E[|φ(Xt)|] < ∞ for all t ≥ 0. Show that {φ(Xt) : Ft; 0 ≤ t < ∞} is a submartingale; In particular, {∥Xt∥;Ft; 0 ≤ t < ∞}
is a submartingale.

Proof. Using Jessen’s Inequality, let s ≤ t, we have

φ(Xs) = φ(E[Xt|Fs]) ≤ E[φ(Xt)|Fs]

Proof from solution: Due to convexity, there exists a family {hα} such that φ = supα hα, where hα are linear functions
sends Rn → R. Therefore,

E[φ(Xt)|Fs] ≥ E[hα(Xt)|Fs] = hα(Xs) ∀α

hence E[φ(Xt)|Fs] ≥ φ(Xs).

Problem (1.3.9). Let N be a Poisson process with intensity λ.

(a) For any c > 0,

lim
t→∞

P[ sup
0≤s≤t

(Ns − λs) ≥ c
√

λt] ≤ 1
c
√

2π

(b) For any c > 0,

lim
t→∞

P

[
inf

0≤s≤t
(Ns − λs) ≤ −c

√
λt
]
≤ 1

c
√

2π

(c) for 0 < σ < τ, we have

E

[
sup

σ≤t≤τ

(
Nt

t
− λ

)2
]
≤ 4τλ

σ2

Hint: Use Stirling’s Approximation to show that limt→∞
1√
λt

E[Nt − λt]+ = 1√
2π

Proof. Nt − λt, the compensated Poisson process is a Martingale, hence by the first submartingale inequality, we have

P[ sup
0≤s≤t

(Ns − λs) ≥ c
√

λt] ≤ E(Nt − tλ)+

c
√

λt

For large t we have

1√
λt

E[Nt − λt]+ =
√

t
∞

∑
n=⌈λt⌉

(tλ)n

n!
e−tλ(

n
t
− λ)

1√
λ

=
√

t
√

λe−λt ⌊tλ⌋⌊tλ⌋

(⌊tλ⌋)!

≈
√

t
√

λe−λt (tλ)
tλ

(tλ)!

→ 1√
2π

as t → ∞

Therefore, take the limit as t → ∞ on both side of the above inequality, we have the desired result.
(b) Using the second submartingale inequality and the stirling approximation result above, the proof is bassically

the same.
(c)

E

[
sup

σ≤t≤τ

(
Nt

t
− λ

)2
]
≤ E

[
sup

σ≤t≤τ
(Nt − λt)2

]
1
σ2

and by Jessen’s (Nt − λt) is a submartingale, hence by Doob’s Maximum Inequality we have

E

[
sup

σ≤t≤τ
(Nt − λt)2

]
≤ 4E[X2

τ ] = 4τλ

The above two inequalities gives the desired result.
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Problem (1.3.11). Let {Fn}∞
n=1 be a decreasing sequence of sub-σ-fields of F (i.e., Fn+1 ⊂ Fn ⊂ F , ∀n ≥ 1), and let

{Xn,Fn, 1 ≤ n < ∞} be a Backward Submartingale; i.e., E[|Xn|] < ∞ for all nand Xn ∈ Fn with E[Xn|Fn+1] ≥ Xn+1 a.s.
P for all n. Show l ≜ limn→∞ E[Xn] > −∞ implies that the sequence {Xn} is uniformly integrable.

Proof. Note that + : x → max{x, 0} is a convex function, then by Jessen’s Inequality, X+
n is also a backward submartin-

gale. Since E[|X+
n |] ≤ E[X+

1 ] for all n. By Markov’s Inequality we have λP[|Xn| > λ] = E[|Xn|] = E[X+
n ] + E[X−

n ] =

2E[X+
n ]− E[Xn] ≤ 2E[X+

1 ]− l < ∞, so P[|Xn| > λ] → 0 as λ goes to ∞. So consider

E[X+
n 1X+

n >λ] ≤ E[X+
1 1X+

n >λ] ≤ E[X+
1 1|Xn |>λ]

which goes to zero as λ → ∞.
Now let m < n and consider

0 ≥
∫
{Xn<−λ}

Xn = E[Xn]−
∫
{Xn≥−λ}

Xn

≥ E[Xn]−
∫
{Xn≥−λ}

Xm

= E[Xn]− E[Xm] +
∫
{Xm<−λ}

Xm

since limn→∞ E[Xn] converges, so we can take m large so that
∫
{|Xm |>λ} X−

m < ϵ, also, for all n ≥ m, we have

−ϵ ≤
∫
{Xm≤−λ}

Xm ≤
∫
{Xn≤−λ}

Xn ≤ 0

so the negative part is also uniformly integrable.

Problem (1.3.16). Let {Xt;Ft, 0 ≤ t < ∞} be a right-continuous, nonnegative supermartingale; show X(ω) = limt→∞ Xt(ω)
exists for P-a.s. ω ∈ Ω, and Xt,Ft, 0 ≤ t ≤ ∞ forms a supermartingale.

Proof. Note that −Xt is a right-continuous submartingale with supt E[X+
t ] = 0. Hence by Submartingale convergence,

we are done.

Excercise (1.3.18). Suppose Ft satisfies the usual conditions. Then every right-continuous, uniformly integrable supermartingales
{Xt,Ft, 0 ≤ t < ∞} admits the Riesz decomposition Xt = Mt + Zt, a.s. P, as the sume of right continuous, uniformly integrable
martingale M and a potential Z.

Proof. By uniformly integrability and Mtg convergence theorem, there is a last element call X∞ such that E[Xt] ≥
E[X∞|Ft]. Define At ≜ Xt − E[X∞|Ft] so At is a supermartingale that converges to zero a.s. and in L1 (monotone),
hence it is a potential, and Mt ≜ E[X∞|Ft] is obviously a Mtg. Where right-continuous used in Mtg convergence
theorem, and usual condition used in defining X∞ since pointwise convergence fails only in a null set.

Problem (1.3.19). The following three conditions are equivalent for nonnegative, right-continuous submartingale {Xt;Ft; 0 ≤
t < ∞}:

1. it is uniformly integrable family of random variables;

2. it converges in L1, as t → ∞;

3. it converges P a.s. (as t → ∞) to an integrable random variable X∞, such that {Xt;Ft, 0 ≤ t ≤ ∞} is a submartingale.

Proof. (1) ⇒ (2): Uniformly integrability ⇒ ∃M ≥ 0; sup E[|Xt|] ≤ M. Hence by Mtg convergence, we have almost sure
convergence, call the convergent element X∞. Fatou’s lemma to get lim E[Xt] = lim inft→∞ E[Xt] ≥ E[lim inft→∞ Xt] =
E[limt→∞ Xt] = E[X∞]. However, E[Xt] is increasing in t, so we have L1 convergence.

(2) ⇒ (3): Convergence in L1 implies convergence in probability. Now, let s ≥ 0 and A ∈ Fs, then
∫

A X∞dP =
limt→∞

∫
A XtdP ≤

∫
A XsdP. Hence it is sub Mtg with last element.

(3) ⇒ (1): Y ≜ E[X∞|Ft] ≥ Xt, and since positive, E[Xt1{Xt>λ}] ≤ E[Y1{Xt>λ}]. Now note that λP[Xt > λ] ≤
E[Xt] ≤ E[X∞] so supt P[Xt > λ] → 0 as λ → 0.

Problem (1.3.20). The following four conditions are equivalent for a right-continuous martingale {Xt;Ft; 0 ≤ t < ∞}:

• (1),(2) as previous problem.

• (3) it converges P a.s. (as t → ∞) to an integrable random variable X∞, such that {Xt;Ft; 0 ≤ t ≤ ∞} is a martingale.
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• (4) there exists a integrable random variable Y such that Xt = E[Y|Ft] a.s. P, for all t ≥ 0.

Besides, if (4) holds and X∞ is the random variable in (3), then

E[Y|F∞] = X∞ a.s. P

Proof. Note that (1) to (2) to (3) is shown in the previous problem since we did not use positivity for those implications,
also, ” ≤ ” case is due to the similar properties of super Mtg’s. For (3) to (4), set X∞ = Y. For (4) to (1), | · |R → R+

is convex function, then by Proposition 3.6 or just Jessen’s Inequality, |E[Y|Ft]| is a sub Mtg and expectation achieves
maximum at t = 0, hence it is uniformly integrable.

The beside part is easily seen.

Problem (1.3.21). Let {Nt;Ft; 0 ≤ t < ∞} be a Poisson process with parameter λ > 0. For u ∈ C and i =
√

1, define the
process

Xt = exp
{

iuNt − λt(eiu − 1)
}

(i) Show that ℜ(Xt) and ℑ(Xt) are martingales.
(ii) Consider X with u = −i. Does this martingale satisfy the equivalent conditions of problem 3.20?

Proof. (i) Let s ≤ t, and note we don’t have to check real and imaginary parts seperately,

E[Xt − Xs|Fs] = E[Xs

(
exp

{
iu(Nt − Ns)− λ(t − s)(eiu − 1)

}
− 1
)
|Fs]

= XsE[
(

exp
{

iu(Nt − Ns)− λ(t − s)(eiu − 1)
}
− 1
)
]

where the last equality is by independence. Nt − Ns is a Poisson random variable with parameter λ(t − s). By looking
up the character function of Poisson random variable, we found the expectation is zero, hence a martingale.

(ii) Let u = −i, then

Xt = exp {Nt − λt(e − 1)}

and it is distributed as follows

P[Xt = exp {n − λt(e − 1)}] = (λt)n

n!
e−λt

So, if we were to take 1{Xt>K}, it is enough to consider the expectation on {Nt > K}, so consider

E[Xt1Nt≥K] =
∞

∑
n=k

(eλt)n

n!
e−λte

each summant is less than 1, so by bounded convergence theorem, take k → ∞ it converges to zero, so it does satisfy
the equivalent conditions of the previous problem.

1.3.C Optional Sample Theorem

Problem (1.3.32). Establish the optional sampling theorem fro a right-continuous submartingale {Xt;Ft; 0 ≤ t < ∞} and
optional times S ≤ T under either of the following two conditions:

• T is a bounded stopping time (there exists a number a > 0 such that T ≤ a);

• there exists an integrable random variable Y, such that Xt ≤ E[Y|Ft] a.s. P, for every t ≥ 0.

Proof. (i) Let a ≥ T(ω) for all ω, then Yt = Xt∧a,Ft, 0 ≤ t < ∞ is a submartingale with last element Xa. So by Theorem
1.3.22 we have E[XT |FS+ ] = E[YT |FS+ ] ≥ YS = XS.
(ii) This is the definition of sub Mtg with last element, so use Theorem 1.3.22 directly.

Problem (1.3.24). Suppose thath {Xt;Ft; 0 ≤ t < ∞} is a right-continuous sub Mtg and S ≤ T are stopping times of Ft. Then

• {XT∧t;Ft; 0 ≤ t < ∞} is a sub-Mtg;

• E[XT∧t|FS] ≥ XS∧t a.s. P, for every t ≥ 0.
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Proof. (i) Let s ≤ t, and t∧ T and s∧ T are bounded stopping times. Optional stopping theorem tells us E[XT∧t|FT∧s] ≥
XT∧s.

E[XT∧t|Fs] = E[1{T≤s}XT∧t|Fs] + E[1{T>s}XT∧t|Fs]

= E[1{T≤s}XT∧s|Fs] + E[1{T>s}XT∧t|Fs]

≥ E[1{T≤s}XT∧s|Fs] + 1{T>s}Xs

= 1{T≤s}XT + 1{T>s}Xs

= XT∧s

To justify the third inequality, let A ∈ Fs, then A ∩ {T > s} ∈ Fs ∩ FT

E[1A∩{T>s}XT∧t] = E[E[1A∩{S>t}XT∧t|Fs∧T ]] ≥ E[1A∩{T>s}XT∧s]

The second equality is because XT∧s ∈ FT∧s ⊂ Fs by Proposition 1.2.18.
(ii) Note {T ≤ s} ∈ Fs.

E[XT∧t|FS] = E[1S≤tXT∧t|FS] + E[1S>tXT∧t|FS]

= E[1{S≤t}XT∧t|FS] + E[1{S>t}XS∧t|FS]

note E[1{S>t}XS∧t|FS] = 1{S>t}E[XS|FS] = 1{S>t}XS. And E[1{S≤t}XT∧t|FS] ≥ 1{S≤t}XS∧t: to justify this, let A ∈ FS,
then A ∩ {S ≤ t} ∈ FS∧t since A ∩ {S ≤ t} ∈ Ft and A, {S ≤ t} ∈ FS and FS ∩ Ft = FS∧t, and consider the following
integral ∫

A
1{S≤t}XT∧tdP = E[E[1A∩{S≤t}XT∧t|FS∧t]] ≥ E[1A∩{S≤t}XS∧t]

True for all A ∈ FS, hence we have desired inequality.

Problem (1.3.25). A sub Mtg of constant expectation for all t ≥ 0 is a Mtg.

Proof.

E[E[Xt|Fs]− Xs] = 0

and E[Xt|Fs] ≥ Xs, so we must have equality almost everywhere.

Problem (1.3.26). A right-continous process X = {Xt,Ft, 0 ≤ t < ∞} with E[|Xt|] < ∞ for all t ≥ 0 is a submartingale if and
only if for every pair S ≤ T of bounded stopping times of the filtration Ft we have

E[XT ] ≥ E[XS]

Proof. Why isn’t this obvious?

Problem (1.3.27). Let T be a bounded stopping time of the filtration Ft, which satisfies the usual conditions, and define F̃t =

FT+t. Then F̃t also satifies the usual conditions.
(i) If X = {Xt;Ft; 0 ≤ t < ∞} is right-continuous submartingale, then so is X̃ = {X̃t ≜ XT+t − XT , F̃t, 0 ≤ t < ∞}.
(ii) If X̃ = {X̃t, F̃t, 0 ≤ t < ∞} is a right continous submartingale with X̃0 = 0 a.s. P, then X = {X̃t−T∨0;Ft; 0 ≤ t < ∞} is
also a submartingale.

Proof. (i) There is no doubt about adaptivity. Let s ≤ t and consider

E[XT+t − XT |FT+s] = E[XT+t|FT+s]− XT ≥ XT+s − XT

by Optional Sampling.

(ii) Problem with this question: Ft−T not formally defined in the previous text.
Xt = X̃(t−T)∨0 a.s. P. For adaptivity, A ∈ F̃t = FT+t ⇐⇒ A ∩ {T + t ≤ s} ∈ Fs, and we know {X̃s ∈ A} ∈ F̃t =

Ft+T for any A ∈ B(Rn), that is {X̃t ∈ A} ∩ {T + t ≤ s} ∈ Fs for all s ≥ 0.

Xt = X̃(t−T)∨0 = X̃(t−T)∨0(1t<T + 1t≥T) = X̃01t<T + X̃t−T1t≥T
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That means if A ∈ B(Rn), then

{Xt ∈ A} = {X̃01t<T + X̃t−T1t≥T ∈ A}
= {X̃01t<T ∈ A} ∪ {X̃t−T1t≥T ∈ A}

where the first term is cerntainly in Ft. {1t≥T} ∈ Ft

Problem (1.3.28). Let Z = {Zt,Ft, 0 ≤ t < ∞} be a continuous nonnegative martingale with Z∞ = limt→∞ Zt = 0 a.s. P.
Show that for every s ≥ 0, b > 0 we have

1. P
[
supt>s Zt ≥ b|Fs

]
= 1

b Zs, a.s. on {Zs < b}.

2. P
[
supt≥s Zt ≥ b

]
= P[Zs ≥ b] + 1

b E[Zs1Zs<b]

Proof. (1) Let B = {Zs < b} and let T ≜ inft{t ≥ s : Zt = b}, then Zt∧T is a martingale, and by one version of optional
sampling, for all A ∈ Fs we have ∫

A∩B
ZsdP =

∫
A∩B

Zt∧TdP

=
∫

A∩B
1t≥TbdP +

∫
A∩B

1t<TZtdP

Now note the second term is monotone in t, so send t → ∞ to get∫
A∩B

ZsdP = bP[A ∩ {Zs < b} ∩ {T < ∞}]

since this is true for all A ∈ Fs, then we are done.
(2) follows directly from (1).

Problem (1.3.29). let {Xt,Ft, 0 ≤ t < ∞} be a continuous, nonnegative super martingale and T = inf{t ≥ 0; Xt = 0}. Show
that

XT+t = 0; 0 ≤ t < ∞ holds a.s. on {T < ∞}

Proof. Note that {Xt} is uniformly integrable, hence it has a last element, also note that optional sampling theorem
applies to −Xt since it is a submartingale.

0 ≥ −E[1T<∞XT+t] = −E[E[XT+t|FT ]1T<∞] ≥ −E[XT1T<∞] = 0

and the result is given by positivity.

Problem (1.5.7). Show < ·, · > is a bilinear form of M2, i.e. for any members X, Y, Z ∈ M2 and real number α, β, we have

1. < αX + βY, Z >= α < X, Z > +β < Y, Z >,

2. < X, Y >=< Y, X >

3. | < X, Y > |2 ≤< X >< Y >

4. For P-a.e. ω ∈ Ω

ξ̂t(ω)− ξ̂s(ω) ≤ 1
2
[< X >t (ω)− < X >s (ω)+ < Y >t (ω)− < Y >s (ω)] 0 ≤ s < t < ∞

where ξ̂t denote the total variation of ξ ≜< X, Y > on [0, t].

Proof. (1) αXZ + βYZ− < αX + βY, Z > is a martingale, and αXZ + βYZ − α < X, Z > −β < Y, Z > is also an
martinagle, and by the uniqueness of the cross variation, they are equal.

(2) Since multiplication in M2 is commutative.
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(3)

0 ≤< X − λY > =< X + λY, X − λY >

=< X > +λ2 < Y > −2λ < X, Y >

Assume WLOG that < Y >t> 0 for t > 0, since if < Y >t is zero, for t ∈ [0, T] for some T, Then E[Y2] = E[< Y >t] = 0,
since Y2 ≥ 0, then Y is identically zero on the interval [0, T], hence both quadratic and cross variations are zeros, so
equality holds. With that cleared, let λ = <X,Y>

<Y> , then the above is

0 ≤< X > +
< X, Y >2

< Y >
− 2

< X, Y >2

< Y >

Multiply both sides by < Y >, then we are done.
(4) ξ̂t = ∑Π | < X, Y >tn+1 − < X, Y >tn |. Note the following

| < X, Y >tn+1 − < X, Y >tn | = 1
4
| < X + Y >tn+1 − < X + Y >tn − < X − Y >tn+1 + < X − Y >tn |

≤ 1
4
[∆tn < X + Y > +∆tn < X − Y >]

=
1
2
(< X >tn+1 − < X >tn) +

1
2
(< Y >tn+1 − < Y >tn)

sum them up to get the desired inequality.

Problem (1.5.11). Let {Xt;Ft, 0 ≤ t < ∞} be a continuous process with the property that for each fixed t > 0 and for some
p > 0,

lim
∥Π∥→0

V(p)
t = Lt (in probability)

where Lt is a random variable taking values in R+ a.s. Show that for q > p, lim∥Π∥→0 V(q)
t (Π) = 0 in probability, and for

0 < q < p, the limit is infinite on the event {Lt > 0}.

Proof.

V(q)(Π) = mt(X)q−p
n

∑
k=1

|Xtk+1 − Xtk |
p

where mt(X, Π) = sup{|Xt − Xs| : 0 ≤ t, s ≤ t, |s − t| ≤ ∥Π∥}, by uniformly continuity, this thing goes to zero a.s. Now
the problem becomes obvious.

Problem (1.5.12). Let X ∈ Mc
2, and T is a topping time of {Ft}. If < X >T= 0, a.s. P, then we have P[XT∧t = 0, ∀0 ≤ t <

∞] = 1.

Proof. X2
t∧T− < X >T∧t is a continuous martingale by one of the optional sample theorems, and since < X > is an

increasing and continuous, hence

P[< X >t∧T= 0; ∀0 ≤ t < ∞] = ∑
r∈Q+

P[< X >r∧T= 0] = 0

Problem (1.5.14). Show that for X, Y ∈ Mc
2 and Π a partition of [0, 5],

lim
∥Π∥→0

m

∑
k=1

(Xtk − Xtk−1)(Ytk − Ytk−1) =< X, Y >t in probability

Proof. Only thing we have to consider now is their difference:

E

[
m

∑
k=1

(Xtk − Xtk−1)(Ytk − Ytk−1)− < X, Y >t

]2

=
m

∑
k=1

E
[
(Xtk − Xtk−1)

2(Ytk − Ytk−1)
2 − 2(Xtk − Xtk−1)(Ytk − Ytk−1)(< X, Y >tk − < X, Y >tk−1) + (< X, Y >tk − < X, Y >tk−1)

2
]

+ E[ ∑
1≤k ̸=l≤m

(Xtk − Xtk−1)(Ytk − Ytk−1)− (< X, Y >tk − < X, Y >tk−1))((Xtl − Xtl−1)(Ytl − Ytl−1)− (< X, Y >tl − < X, Y >tl−1))]
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use conditional expectation we see that the second term is zero. Assume for now Y, X be bounded by K, and consider
the first sum, all terms goes to zero by versions of Holder’s inequality and bounded convergence theorem. If X, Y are
not bounded, then using Tn = {max{|Xt|, |Yt|} ≥ n} and localization.

Problem (1.5.17). Let X, Y ∈ Mc,loc. Then there is a unique (up to indistinguishability) adapted, continuous process of bounded
variation < X, Y > satisfiying < X, Y >0= 0 a.s. P, such that XY− < X, Y >∈ Mc,loc. If X = Y, we write < X >=<
X, Y >, and this process is nondecreasing.

Proof. By definition, there exists an nondecreasing sequence of stopping times such that Tn → ∞ a.s. P such that
Xt∧Tn , Yt∧Tn are Mtg’s. So denote < X, Y >

(n)
t be the cross variation of X(n)

t Y(n)
t = (XY)t∧Tn , meaning (XY)t∧Tn− <

X, Y >
(n)
t is a martingale.

Now note that (XY)t∧Tn∧Tn−1− < X, Y >
(n)
t∧Tn−1

= (XY)t∧Tn−1− < X, Y >
(n−1)
t a.s. P by uniqueness of cross-variation.

So < X, Y >n−1
t =< X, Y >n

t on {t ≤ Tn−1}, so define < X, Y >t (ω) ≜< X, Y >
(n)
t for Tn ≥ t a.s. and it is an increasing

process.

Problem. 1.5.19

1. A local martingale of class DL is a martinagle.

2. A nonnegative local martingale is a super-martingale.

3. If M ∈ Mc,loc and S is a stopping time of Ft, then E(M2
S) ≤ E < M >S, where M2

∞ ≜ lim inft→∞ M2
t .

Proof. (1) Suppose X is a local mtg of class DL, meaning for family La and T ∈ La(P[T ≤ a] = 1 for some fixed number
a > 0),{XT}T∈La is uniformly integrable. First of all, there exists {Tn}n∈N where P[Tn → ∞] = 1 such that XTn∧t is
a martingale for all n. Now, choose any S < T bounded sotpping times, they are in some class La for some a. So by
optional sampling theorem, E[XT∧Tn ] = E[XS∧Tn ], now take n large so a < Tn a.s. P, so we have E[XT ] = E[XS] for all
S ≤ T, and same in reverse order, so by problem 1.3.26, X is a martinagle.

(2) Since nonnegative, we can use Fatou’s Lemma: Let S be a bounded stopping time of Ft, then by Fatou’s Lemma
we have E[lim inf Xt∧Tn∧S|Fs] ≤ lim inf Xs∧Tn∧S. Now, since Tn increases to ∞ almost surely, lim inft→∞ Xt∧Tn∧S = Xt∧S
a.s. P, so let t > S, and by Problem 1.3.26 again, we are done.

(3) So far we have E[M2
t∧Tn

] = E[< X >t∧Tn ] for all n and t, and E[M2
t∧Tn∧S] = E[< X >t∧Tn∧S]. Now, take lim inf

and use Fatou’s lemma again to get

E[lim inf
n→∞

X2
t∧Tn∧S] ≤ lim inf E[< X >t∧Tn∧S]

Note that < X >t∧Tn is nondecreasing both in t and n since Tn is increasing. So by Monotone convergence theorem,
we can move the lim inf inside of the expectation, and since Tn eventually increases to infinity, we have

E[X2
t∧S] ≤ E[< X >t∧S]

now use Fatou’s lemma and the fact that the quadratic variation of a local martingale is nondecreasing and monoton
convergence theorem again

E[lim inf
t→∞

X2
t∧S] ≤ E[< X >S]

Then the conclusion holds true on the set {S < ∞}, and taking into account that M2
∞ exists (in the sense of lim inf),

then we are done.

Excercise (1.5.20). Suppose X ∈ M2 has stationary, independent increments. Then < X >t= t(EX2
1).

Proof. Say t < 0, then X2
t − < X >t is a mtg starting with zero. Also we have Xt − Xs ∼ Xt−s for t ≥ s, and

Xt − Xs ⊥ Xu − Xv for v ≤ u ≤ s ≤ t.

E[X2
t − X2

s − (t − s)EX2
1 |Fs] = E[(Xt − Xs)

2]− (t − s)EX2
1

= E[X2
t−s]− (t − s)EX2

1

Now, let f (t) = E[X2
t ], then we have f (t − s) = f (t) − f (s), the only solution to this equation is f (x) = cx, where

c = f (1) (I actually did not know this).
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Excercise (1.5.21). Employ the localization technique used in the solution of problem 5.17 to establish the following extension of
problem 5.12: If X ∈ Mc,loc and for some stopping time T of Ft we have < X >T= 0 a.s. P, then P[XT∧t = 0; ∀0 ≤ t < ∞] = 1.
In particular, every X ∈ Mc,loc of bounded first variation is identically equal to zero.

Proof. We have Xt∧Tn is a martinagle for all Tn stopping time Ft and Tn ↑ ∞ a.s., then we’d have < X >Tn∧T= 0 since
< X > is nondecreasing, so Xt∧Tn is identically zero for all n ∈ N, so take n → ∞.

Problem (1.5.24). Let M ∈ M2 ∪Mc,loc and assume that its quadratic variation process < M > is integrable: E < M >∞< ∞.
Then

1. M is a martinagle, and M and the submartingale M2 are both uniformly integrable; in particular, M∞ = limt→∞ Mt exists
a.s. P, and E[M2

∞] = E < M >∞.

2. We may take a right-continuous modification of Zt = E[M2
∞|Ft]− M2

t ; t ≥ 0, whic is a potential.

Proof. (1) Assume M ∈ Mc,loc, we have from problem 1.5.19 that E[M2
S] ≤ E[< M >S]leE[< X >∞] for all stopping

time of Ft, that includes the case S = t for t ∈ R+, then by Durrett, 2019, {MS}S∈L is uniformly integrable, hence of
class DL, and by Problem 1.5.19 (i), it is a martinagle.

Now by the uniform integrability of M, we know that Mt → M∞ for some M∞ integrable and in L2

E[ lim
t→∞

M2
t ] ≤ lim

t→∞
E[M2

t ] ≤ E[< M >∞]

so we have L1 convergence of nonnegative submartingale, so by one of the mtg convergence theorem, M2
t is also

uniformly integrable, moreover, M2
∞ is its last element. So Zt ≥ 0 a.s. P, and E[Zt] = E[M2

∞ − M2
t ] → 0 as t → ∞.

Problem (1.5.25). let M ∈ Mc,loc and show that for any stopping time T of Ft,

P

{
max

0≤t≤T
|M|t ≥ ϵ

}
≤ E[δ∧ < M >T ]

ϵ2 + P[< M >T≥ δ]

∀ϵ, δ > 0. In particular, for a sequence {M(n)}n∈N ⊂ Mc,loc we have

< M(n) >T→P 0 =⇒ max
0≤t≤T

|M(n)
t | →P 0

Proof. By 1.5.19 (ii) we have E[M2
T ] ≤ E[< M >T ] holds for any bounded stopping time T of Ft. The n by Remark

1.4.17 we have the desired conclusion.

Problem (1.5.26). Let M, N ∈ Mc,loc with Ft and Ht as filtrations respectively, and suppose F∞ ⊥ H∞. With Gt = △σ(Ft ∪
Ht) show that M, N, MN are all local martinagles with repsect to Gt.

2. Brownian Motion

Problem (2.1.4). Let X be a stochastic process for which X0, Xt1 − Xt0 , ..., Xtn − Xtn−1 are indepdnent random variables, for every
integer n ≥ 1 and partition {ti}1≤i≤N of the real line. Show that for any fixed 0 ≤ s < t < ∞, the increment Xt − Xs is
independent of FX

s .

Proof. σΠn = σ(Xt1 , ..., Xtn) = σ(Xt2 − Xt1 , ..., Xtn − Xtn−1), and they are all subset of the collection of the set that is
independent of Xt − Xs, call it D, which is a Dynkin’s system, and call the collection of all σΠn G, then G ⊂ D, and by
the Dynkin’s system theorem, we are done.

2.4 The Space C[0, ∞), Weak Convergence, and the Wiener Measure

Define

ρ(ω1, ω2) ≜
∞

∑
n=1

1
2n max

0≤t≤n
(∥ω1(t)− ω2(t)∥ ∧ 1)

The metric on the space C[0, ∞)

Problem (2.4.1). Show that ρ above is a metric on C[0, ∞) and under ρ, the space is complete and seperable metric space.
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Proof. Metric: Obvious. Suppose fn → f in ρ, that is

∑
n∈N

1
2n max

1≤t≤n
(| fn(t)− f (t)| ∧ 1) → 0

so each max1≤t≤n (| fn(t)− f (t)|) → 0. Suppose x ∈ [0, ∞), then 0 ≤ x ≤ n for some n, then we have uniformly
convergence on [0, n] of fn to f , hence f continous at x.

Problem (2.4.2). Let G(Gt) be collection of finite-dimensional cylinder sets of the for

C = {ω ∈ C[0, ∞) : (ω(t1), ..., ω(tn)) ∈ A} n ≥ 1, A ∈ B(Rn)

where, for all i = 1, ..., n, ti ∈ [0, ∞)(respectively, ti ∈ [0, t]). Denote by G(Gt) the smallest σ-field containing G(Gt).
Show that G = B(C[0, ∞)), the borel σ-field generated by the open sets in C[0, ∞), and that Gt = φ−1

t (B(C[0, ∞)) ≜
Bt(C[0, ∞)), where φt : C[0, ∞) → C[0, ∞) is the mapping φt(ω)(s) = ω(t ∧ s) for 0 ≤ s < ∞.

Proof. I guess open sets are defined by the metric ρ. Note that G is generated by H = {ω ∈ C : ω(t) ∈ A} where
t ∈ R+ and A ∈ B(R), or we can even take A to be open. For all ω ∈ H, H contians Bϵ(ω) with ϵ small enough, so
G ⊂ B(C[0, ∞)), so H is open in ρ. Since we working with continuous functions, the summants in ρ can be taken to be
the sup of rationals, so we have the other direction.

For the second part: Let C be a cylinder set

φ−1
t (C) = {ω ∈ C([0, ∞)) : (φ(ω)(ti))1≤i≤n ∈ A}

= {ω ∈ C([0, ∞)) : (ω(ti ∧ t))1≤i≤n ∈ A} ∈ Gt

If C ∈ σ(Gt), we can take it to be {ω ∈ C[0, ∞) : (ω(ti))1≤i≤n ∈ A} where ti ∈ [0, t] for all i and A ∈ B(Rn), then
C = {ω ∈ C[0, ∞) : (φω(ti))1≤i≤n ∈ A} ∈ Bt(C[0, ∞)).

Problem (2.4.5). Suppoose {Xn}n∈N is a sequence of random variables taking values in a metric space (S1, ρ1) and converging
in distribution to X and suppose (S2, ρ2) is another metric space, and φ : S1 → S2 is continous. Show that Yn ≜ φ(Xn) converges
in distributiion to Y ≜ φ(X).

Proof. Let f be a continous function on S2, and consider

E[ f (φ(Xn))] = E[ f ◦ φ(Xn)] → E[ f ◦ φ(X)]

by definition.

Def. Let Π be a family of probability measure, it is relatively compact if every sequence of elements of Π contains a weakly
convergent subsequence. It is tight if for every ϵ > 0, there exists compact set K ⊂ S such that P[K] ≥ 1 − ϵ for all P ∈ Π.

tight is similar to equicontinuous

Theorem (Prohorov). Let Π be a family of probability measures on a complete seperable metric space S. Π is relatively compact
if and only if it is tight.

Def. If ω ∈ C[0, ∞) and δ > 0, we define modulus of continuity on [0, T] as

mT(ω, δ) ≜ max
|s−t|<δ;0≤s,t≤T

|ω(s)− ω(t)|

Problem (2.4.8). Show that mT(ω, δ) is continous in ω ∈ C[0, ∞) under the metric ρ as abov, is nondecreasing in δ, and
limδ↓0 mT(ω, δ) = 0 for each ω ∈ C[0, ∞).

Proof. First for continuity: Let

lim
n→∞

ρ(ωn, ω) = 0 ⇐⇒ lim
n→∞ ∑

1≤k<∞

1
2n

(
max

0≤t≤k
|ωn(t)− ω(t)| ∧ 1

)
→ 0

In particular, ωn → ω uniformly on [0, T]. So consider

|mT(ω, δ)− mT(ωn, δ)| =
∣∣∣∣ max
|s−t|<δ;0≤s,t≤T

|ω(s)− ω(t)| − max
|s−t|<δ;0≤s,t≤T

|ωn(s)− ωn(t)|
∣∣∣∣

≤ max
|s−t|<δ;0≤s,t≤T

|ω(s)− ω(t)− ωn(s) + ωn(t)|

It goes to zero by triangular inequality and relaxing the restriction for which we are taking maximum of.
The second assersion is true due to uniform continuity.

15



Theorem (Arzala-Ascoli). A set A ⊂ C[0, ∞) has compact closure if and only if the following two condition holds:

sup
ω∈A

|ω(0)| <∞

lim inf
δ↓0

sup
ω∈A

mT(ω, δ) = 0 for every T > 0

Problem (2.4.11). Let {X(m)}m∈N be a sequence of continuous stochastic processes X(m) = {X(m)
t ; 0 ≤ t < ∞} ono (Ω,F , P),

satisfying the following conditions

• supm≥1 E

∣∣∣X(m)
0

∣∣∣ν △M < ∞

• supm≥1 E

∣∣∣X(m)
t − X(m)

s

∣∣∣α ≤ CT |t − s|β+1; ∀T > 0 and 0 ≤ s, t ≤ T

for some positive constant α, β, ν universally and CT depending on T > 0.
Show that the probability measure Pm = P(X(m))−1; m ≥ 1 induced by these processes on (C[0, ∞),B(C[0, ∞))) form a tight

sequences.

Proof.

P[|X(m)
0 | ≥ λ] ≤

E|X(m)
0 |ν

λν
≤ M

λν
uniformly

so taking sup and take λ → ∞ this thing converges to zero, which verifies condition (4.6) of Theorem 4.10 since
P[|X(m)

0 | ≥ λ] = Pm(|ω(0)| ≥ λ) since we are assuming those are coordinate mapping processes.
Now let mT(ω, δ) ≜ max|t−s|<δ,0≤s,t≤T |ω(s)− ω(t)|. Again by Chebyshev we have

P
[
|X k

2n
− X k+1

2n
| ≥ ϵn

]
≤

E
[
|X k

2n
− X k+1

2n
|α
]

ϵα
n

≤ ϵ−α
n CT2−(nβ+n)

So let Dn ≜ {r ∈ [0, 1] : r = k
2n for some k and n}, then ∪n≥1Dn would be the set of dyadic rationals dense in [0, 1], let

D̃n =
⋃

k≥n Dk. Also let ϵn = 2−n and get,

P

(
max

1≤k≤2n

∣∣∣X k
2n

− X k+1
2n

∣∣∣ > ϵn

)
= P

( ⋃
2n≥k≥1

∣∣∣X k
2n

− X k+1
2n

∣∣∣ > ϵn

)

≤
2n

∑
k=1

P
(∣∣∣X k

2n
− X k+1

2n

∣∣∣ > ϵn

)
≤ ϵ−α

n CT2−nβ

Note that those forms a summable series, so by Borel-Cantelli, we have

P

(⋂
n≥1

⋃
k≥n

max
1≤i≤2k

∣∣∣∣X i
2k
− X i+1

2k

∣∣∣∣ > ϵn

)
= 0

That is, for all δ > 0, there eixsts n ≥ 1 such that ]

P

(⋃
k≥n

max
1≤i≤2k

∣∣∣∣X i
2k
− X i+1

2k

∣∣∣∣ > ϵn

)
= P

(
max

|s−t|≤ϵk ;s,t∈D̃k

|Xt − Xs|
)

< δ

where in the proof we use X to denote arbitrary X(m), and since we can take sup on each probability measure, so we
are done.

Problem (2.4.12). Suppose {Pn}n∈N is a sequence of probability measures on (C[0, ∞),B(C[0, ∞))) which converges weakly
to a probability measurable P. Suppose, in addition, that { fn}n∈N is a uniformly bounded sequence of real valued continuous
function on C[0, ∞) converging to a continuous function f , the convergence being uniform on compact subsets of C[0, ∞). Then

lim
n→∞

∫
C[0,∞)

fn(ω)dPn(ω) = lim
n→∞

∫
C[0,∞)

f (ω)dP(ω)
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Proof. Let Bn be the closed ball of radius n ∈ N in C[0, ∞), then ∀ϵ > 0, ∃N ≥ 1 such that P(Bc
n) < ϵ for all n ≥ N.∣∣∣∣∫C[0,∞)

fndPn −
∫

C[0,∞)
f dP

∣∣∣∣
=

∣∣∣∣∫C[0,∞)
fndPn −

∫
C[0,∞)

fndP +
∫

C[0,∞)
fndP −

∫
C[0,∞)

f dP

∣∣∣∣
≤
∣∣∣∣∫C[0,∞)

fndPn −
∫

C[0,∞)
fndP

∣∣∣∣+ ∣∣∣∣∫C[0,∞)
fndP −

∫
C[0,∞)

f dP

∣∣∣∣
Now doubt the second term goes to zero, now look at the first one∣∣∣∣∫C[0,∞)

fndPn −
∫

C[0,∞)
fndP

∣∣∣∣
≤
∣∣∣∣∫C[0,∞)

fndPn −
∫

C[0,∞)
f dPn

∣∣∣∣+ ∣∣∣∣∫C[0,∞)
f dPn −

∫
C[0,∞)

fndP

∣∣∣∣
≤2Mϵ +

∣∣∣∣∫C[0,∞)
fn φkdPn −

∫
C[0,∞)

f φkdPn

∣∣∣∣+ ∣∣∣∣∫C[0,∞)
f φkdPn −

∫
C[0,∞)

fn φkdP

∣∣∣∣
where 0 ≤ φk ≤ 1 takes value 1 on Bk and zero on Bk(1 + δ) for some small δ given by Urysoln’s Lemma and M be
the uniform bound of fn and as well as f . Then clearly second term goes to zero. Now look at the first term. Since we
have locally uniform convergence, let n so large that ∥ fn − f ∥L∞(Bk)

< 2−N , then the integral would be less than 2−N

as well, so it converges to zero.

2.5. The Markov Property

Problem (2.5.2). Show that for each F ∈ B (C[0, ∞]), the mapping x 7→ Px(F) is B(Rn)\B([0, 1])-measurable.(Hint: Dynkin
System)

Proof. Observations: Let D ≜ {A ∈ B (C[0, ∞)) for which the map x 7→ Px(A) is B(Rn)\B([0, 1]) measurable}.
Suppose A, b ∈ D and A ⊂ B, then x 7→ Px(B) − Px(A) = Px(B − A) is B(Rn)\B([0, 1]) measurable, same for an
increasing sequence An. So D is a Dynkin’s system. Now we only need to show that the generating sets of B (C[0, ∞))
is in D. So by Problem 2.4.2, we only need to show this for A′{ω ∈ C[0, ∞) : ω(t) ∈ A} for arbitrary t ≥ 0. So

x 7→ P0 ({ω ∈ A + x}) =
∫

A+x

1√
2πt

e−
ξ2

2t2 dξ =
∫

A

1√
2πt

e−
(ξ+x)2

2t2 dξ

turns out to be a continous function, so measurable.

Problem (2.5.4(3)). The coordinate mapping process B = {Bt,BB
t ; t ≥ 0} oon

(
C[0, ∞)d,B

(
C[0, ∞)d

)
, Pµ

)
is a d-dim Brow-

nian Motion with intial distributed µ.

Proof. It is definitely adapted and continous.

Pµ (B0 ∈ Γ) =
∫

Rd
Px(Γ)µ(dx)

=
∫

Rd
P0(Γ − x)µ(dx)

=
∫

Rd
XΓ(x)µ(dx) = µ(Γ)

and Bt − Bs when s < t is a Gassian vector in Rd, so it is a Brownian motion with initial distribution µ.

Problem. 2.5.5 Let {Bt = (Bi
t)1≤i≤d,Ft, 0 ≤ t < ∞} be a d-dim Brownian Motion. Show that the process

M(i)
t ≜ B(i)

t − B(i)
0 ,Ft; 0 ≤ t < ∞, 1 ≤ i ≤ d

are continous, square integrable martingales, with < M(l), M(j) >t= tδl j. Furthermore, the vector of martinagles M =

(M(i))1≤i≤d is indepdnent of F0.
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Obvious

Def (2.5.6). Let (S, ρ) bea metric space, we denote by B(S)µ the complition of the Borel σ field(generated by the open sets) with
respect to the finite measure µ on the metric space. The universal σ-field is U (S) ≜

⋂
µ B(S)µ, where the intersection is over

all finite measures, or equivalently, all probability measures, µ. A U (S)/B(R)-measurable, real valued function is said to be
universally measurable.

Problem (2.5.7). Let (S, ρ) be a metriic space and let f be a real-valued function defined on S. Show that f is universally
measurable if and only if for every finite measurable µ on (S,B(S)), there is a borel measurable function gµ : S → R such that
µ{x ∈ S : f (x) ̸= g(x)} = 0.

Proof. (⇒): Suppose f is universally measurable, then f−1(B) ⊂ Bµ for all probability measures µ. Pick any µ, by the
nature of the complition of σ field, there exists gµ that agrees with f almost everywhere.

(⇐): we have that µ( f−1(B)△g−1
µ (B)) = 0 for all B ⊂ B(R), so f−1(B) ∈ B(S)µ.

2.5 B. Markov Processes and Markov Families

Problem (2.5.9). make the preceding discussion rigorous by proving the following result:
If X, Y are d-dim random vectors on (Ω,F , P),G is s sub-σ-field of F , X ⊥ G and Y ∈ G, then for eveyr Γ ∈ B(Rd)”

P[X + Y ∈ Γ|G] = P[X + Y ∈ Γ|Y], a.s. P;

P[X + Y ∈ Γ|Y = y] =P[X + y ∈ Γ], for PY−1-a.e.y ∈ Rd

Proof. (a) In this case, we only have to show that P[X + Y ∈ Γ|G] = E[1X+Y∈Γ|G] ∈ σ(Y). Let D = A × B where
A, B ∈ B(Rn). Then

P[(X, Y) ∈ D|G] = E[1{X∈A}1{Y∈B}|G] = 1{X∈A}E[1{Y∈A}]

Also we have σ({A × B : A, B ∈ B(Rn)}) = σ(Rd × Rd). Now let D = {(x, y) : x + y ∈ Γ} ∈ B(Rd × Rd). Similar
proof for the second one.

3.2 Construction of Stochastic Integral

Problem (2.12). Let W be a standard one dim B-M, and let T be a stopping time of Ft of the BM with E[T] < 0. Prove the Wald
Identities

E[WT ] = 0; E[W2
T ] = E[T]

Proof. Note that we must have T < ∞ a.s. P, so we have Wt∧T(ω) → WT(ω) a.s. pointwise (or this can be obtained
from Submartingale Convergence Theorem), also W2

t∧T(ω) → W2
T(ω) a.s. From Problem 1.3.24(a) we know that W2

T∧T
is a submartingale with respect to the same filtration. Then perhaps we can show it is uniformly integrable. So consider

E[X|WT∧t |≥K|WT∧|]2 ≤ P[|WT∧t| ≥ K]E[W2
T∧t]

= P[|WT∧t| ≥ K]E[t ∧ Tq]
= P[|WT∧t| ≥ K]E[T]

≤ E[T]
E[W2

T∧t]

K2

≤ E[T]2
1

K2

So, limK→∞ supt≥0 E[1|WT∧t ||WT∧t|] = 0. So WT∧t is uniformly integrable, hence by one of the martingale convergence
theorem, E[WT ] = 0.

Excercise (3.2.13). Let W be as in previous problem, let b ∈ R, and let Tb be the passage time to b, that is Tb = inft≥0{Wt = b}.
Use the provious problem to show that for b ̸= 0, we have ETb = ∞.

Proof. E[WTb ] = E[b] = b ̸= 0, so the assumption of Problem 2.12 must not hold, which is E[T] < 0
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Problem (3.2.18). Let M = {Mt,Ft; 0 ≤ t < ∞} and Nt = {Nt,Ft, t ∈ [0, ∞)} be in Mc
1 and suppose X ∈ L(M)∗∞

and Y ∈ L(N)∗∞. Show that the martingales IM(X), IN(Y) are uniformly integrable and have last elements IM
∞ (X), IN

∞ (Y), the
corss-variation < IM(X), IN(Y) >t converges alsmost surely as t → ∞ and

E[IM
∞ (X)IN

∞ (Y)] = E[< IM(X), IN(Y) >∞] = E

∫ ∞

0
XtYtd < M, N >t

In particular,

E

(∫ ∞

0
XtdMt

)2
= E

∫ ∞

0
X2

t d < M >t

Proof. By definition we have

A ≜ E

∫ ∞

0
X2

t d < M >t< ∞ B ≜ E

∫ ∞

0
Y2

t d < N >t< ∞

For uniformly integrability, we consider

E
[
1|IM

t (X)|>K|I
M
t (X)|

]
≤ P

(
|IM

t (X)| > K
)
· E[IM

t (X)2]

≤ 1
K2 E[IM

t (X)2]2

=
1

K2 E

∫ t

0
X2d < M >t

≤ 1
K2

(
E

∫ ∞

0
X2d < M >t

)2
=

A2

K2

which goes to zero as K → ∞, so uniformly integrable. So by Problem 1.3.20, it converges both in L1 and P − a.s. to
some IM

∞ (X) which can be viewed as the last element, and same for IN(Y).
Now, for t ∈ R+, let ξ̂t be the total variation of < M, N >t, we have∣∣∣< IM(X), IN(Y) >t

∣∣∣ = ∣∣∣∣∫ t

0
XsYsd < M, N >s

∣∣∣∣ P − a.s.

≤
∫ t

0
|XsYs|dξ̂t

≤
(∫ t

0
X2

s d < M >s

) 1
2
(∫ t

0
Y2

s d < N >s

) 1
2

≤ 10
[∫ t

0
X2

s d < M >s +
∫ t

0
Y2

s d < N >s

]
≤ 10A + 10B

which is integrable. Now, apply Proposition 2.4 to Xt1t≥T and same for Y, we have∣∣∣∣∫ t+T

T
XsYsd < M, N >s

∣∣∣∣ ≤ (∫ T+t

T
X2

s d < M >s

) 1
2
(∫ T+t

T
Y2

s d < N >s

) 1
2

which goes to zero as T → ∞ for any t > 0, so we have
∫ t

0 XsYsd < M, N >s converges pointwise a.s. P, and it is
bounded by 10(A + B) and we have

lim
t→∞

E[IM
t (X)IN(Y)t] = lim

t→∞
E[< IM(X), IN(Y) >t] = lim

t→∞

∫ t

0
XsYsd < M, N >s

by DCT we can move the limit inside the integral. For the last equality, replace IN(Y) by IM(X).

Problem (3.3.10). With {Zt; 0 ≤ t < ∞} as in Example 3.3.9, set Y = 1
Zt

, 0 ≤ t < ∞, which is well defined because
P[inft≤t≤T Zt > 0] = P[inf0≤t≤T ξt > −∞] = 1. Show that Y satisfies the stochastic differential equation

dYt = YtX2
t dt − YtXtdW, Y0 = 1

19



Proof. Yt = exp
(
−
∫ t

0 XsdWs +
1
2

∫ t
0 X2

s ds
)

and we call ξt =
∫ t

0 XsdWs +
1
2

∫ t
0 X2

s dt. Use Ito’s formula

Yt = Y0 −
∫ t

0
Ysdξt +

1
2

∫ t

0
Ysd < ξ >s +

1
2

∫ t

0
YsX2

s ds

= Y0 −
∫ t

0
YsXsdWs +

∫ t

0
YsX2

s ds

Problem (3.3.12). Suppose we have two continuous semimartingales

Xt = X0 + Mt + Bt; Yt = Y0 + Nt + Ct

where M, N ∈ Mc,loc and B, C are adapted, continuous processes of bounded variation with B0 = C0 = 0 a.s.. Prove the
Integration by Parts Formula ∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs− < M, N >t

Proof. Here we apply Theorem 3.3.6 to f (t, x, y) = x · y. So we have

XtYt = f (t, Xt) = X0Y0 +
∫ t

0
YsdBt +

∫ t

0
XsdCt +

∫ t

0
YsdNs +

∫ t

0
XsdMs + 2 × 1

2

∫ t

0
1d < M, N >s

= X0Y0 +
∫ t

0
YsdXs +

∫ t

0
XsdYs+ < M, N >t

3.3 B. Martingale Characterization of Brownian Motion

3.3. C Bessel Processes, Questions of Recurrence

Problem (3.3.20). Show that for each d ≥ 2, the Bessel family with dimension d is a strong Markov family.

Proof. Compare to Definition 2.6.3, (a) and (b) are included in Px. The rest is fairly obvious due to the connection
between P and P̂.

3.3.D Martingale Moment Inequalities

Excercise (3.3.25). With W be a standard one dim BM and X be measurable adapted process satisfying

E[
∫ T

0
|Xt|2m]dt < ∞

for some real number T > 0 and m ≥ 1, show that

E

∣∣∣∣∫ T

0
XtdWt

∣∣∣∣2m

≤ (m(2m − 1))mTm−1E

∫ T

0
|Xt|2mdt

Proof. Let Mt =
∫ t

0 XsdWs which is a continuous Mtg, and f (t, x) = x2m, then by Ito’s we have

EM2m
t = E

(∫ t

0
2mM2m−1

t XsdWs + m(2m − 1)
∫ t

0
M2m−2

s X2
s dt
)

= E

(
m(2m − 1)

∫ t

0
M2m−2

s X2
s dt
)

= m(2m − 1)
∫ t

0
E
[

M2m−2
s X2

s

]
dt

E
[
M2m−2

s X2
s
]
≤ E

[
E[M2m−2

t |Fs]X2
s

]
= E

[
M2m−2

t X2
s

]
and again,

M2m−2
s = 2(m − 1)

∫ t

0
M2m−3

s dWs + (m − 2)(m − 3)
∫ t

0
M2m−4

s X2
s ds

Then do induction.
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Excercise. Let {M =
(

M(1)
t , ..., M(d)

t

)
,Ft, 0 ≤ t < ∞} be a vector of continuous local Martinagle on some {Ω,F , P}, and

define

A(i,j) ≜< M(i), M(j)
t >, At(ω) ≜

d

∑
i,j=1

Ǎ(i,j)(ω)

where Ǎ(i,j) denotes total variation of A(i,j) on [0, t]. Let Ts(ω) be the inverse of the function At(ω) + t, i.e. AT(ω) + Ts(ω) =
s; 0 ≤ s < ∞.

1. Show that for each s, Ts is a stopping time of Ft.

2. Define Gs ≜ FTs ; 0 ≤ s < ∞. Show that if Ft satisfies the usual condition, then so does Gs.

3. Define

N(i)
s ≜ M(i)

Ts
, 1 ≤ i ≤ d; 0 ≤ s < ∞

Show that for eafch 1 ≤ i ≤ d : Ni ∈ Mc,loc, and the cross variation < Ni, N j >s is an absolutely continuous function of s
a.s. P.

Proof. (1) Consider {Ts ≤ t} = {At + t > s} ∈ Ft.
(2) Gs = FTs = {A ∈ F : A ∩ {Ts < t} ∈ Ft}, so G0 = F0 which contalls all P null sets. Now consider⋂

ϵ>0
Gt =

⋂
ϵ>0

FTt+ϵ

=
⋂
ϵ>0

{A ∈ F : A ∩ {Tt+ϵ < s} ∈ Fs}

=
⋂
ϵ>0

{A ∈ F : A ∩ {As + s > t + ϵ} ∈ Fs}

= Gs

so right continuous.
(3) There is {Sn} sequence of stopping time with MSn∧t ∈ Mc. Note that Ts is finite a.s., so let t < s and use

Optional Sampling theorem we have

E[MSn∧Ts |Gt] = MSn∧Tt

3.5.C Continuous Local Martingale as Time-Changed Brownian Motion

Problem (3.4.5). Let A = {A(t); 0 ≤ t < ∞} be a continuous, nondecreasing function with A(0) = 0, S ≜ A(∞) ≤ ∞, and
define for 0 ≤ s < ∞

T(s) =

{
inf{t ≥ 0 : A(t) > s}; 0 ≤ s < S
∞; s ≥ S

Show that the function T = {T(s); 0 ≤ s < ∞} has the following properties

1. T is nondecreasing and right-continuous on [0, S), with values in [0, ∞). If A(t) < S; ∀t ≥ 0, then lim↑S T(s) = ∞.

2. A(T(s)) = s ∧ S; 0 ≤ s < ∞.

3. T(A(t)) = sup{τ ≥ t; A(τ) = A(t)}; 0 ≤ t < ∞.

4. Suppose φ : R+ → R is continous and has the property

A(t1) = A(t) for some 0 ≤ t1 < t ⇒ φ(t1) = φ(t).

Then φ(T(s)) is continous for 0 ≤ s < S, and

φ(T(A(t))) = φ(t); 0 ≤ t < ∞
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5. For 0 ≤ t, s < ∞ : s < A(t) ⇐⇒ T(s) < t and T(s) ≤ t ⇒ t ≤ A(t).

6. If G is a bounded, measruable, real valued function or a nonnegative measurable, extended real valued function defined on
[a, b] ⊂ [0, ∞), then ∫ b

a
G(t)dA(t) =

∫ A(b)

A(a)
G(T(s))ds

Proof. (a) {t ≥ 0 : A(t) > s1} ⊂ {t ≥ 0 : A(t) > s2} if s1 > s2, so the corresponding inf is also bigger in the first
set. Now suppose A(t) < S for t ≥ 0, then limt→∞ A(t) = S. Since T is nondecreasing, suppose by contradiction that
T(∞) = T∞ < ∞, then for all sequence tn → S such that inf{t ≥ 0; A(t) > tn}. Now take tn be such that A(tn) is
strictly increasing and A(tn) → S. Then inf{t ≥ 0; A(t) > A(tn)} = tn which goes to infinity.

(b) Suppose s < S, then by continuity we have T(s) = sup{t ≥ 0 : A(t) ≤ s}, then by continuity we are done. If
s ≥ S, then by definition we are also done.

(c) First suppose A(t) = S, then T(A(t)) = ∞, and since A(t) is nondecreasing, we have A(s) = S for all s ≥ t, so
T(A(t)) = ∞ = sup{τ ≥ 0 : A(τ) = S}. Now suppose A(t) < S, then T(At) = inf I, where I ≜ {τ ≥ 0 : A(τ) > A(t)}
exists. If τ > T(A(t)) then τ ∈ I, so I = (T(A(t)), ∞) and T(A(t)) = sup(R+)\I.

(d) We have T(A(t)) = t ∧ S. Since T(s) is right continous, we only need to show left continuity here. Let
tn → t− < S, we only need to look at the case where T is not continous at t. But here we have A(T(t−)) = A(T(t)) = t,
so φ(T(t−)) = φ(T(t)), so still continuous.

(e) Suppose 0 ≤ t, s < ∞ and s < A(t), where T(s) = inf{τ ≥ 0 : A(τ) > s}, there is a 0 < t′ < t such that
s < A(t′) < A(t), so T(s) ≤ t′ < t. Now suppose T(s) < t meaning t ∈ {τ ≥ 0 : A(τ) > s}◦. Now suppose T(s) ≤ t,
meaning t ∈ {τ ≥ 0 : A(τ) > s}.

(f) This is just the change of variable formula.

Problem (3.4.7). Show that if P[S ≜< M >∞< ∞] > 0, it is still possible to define a Brownian Motion B for whcih Mt = B<M>t
holds.

Proof. Let’s say Ω is rich enough such that there is a independent Brownian Motion W. Define S ≜ limt→∞ < M >t.
By Problem 4.5 we have that

{T(s) < t} = {s << M >t} ∈ Ft {< M >s≤ t} = {T(t) ≥ s}

Define Gt = FT(t), then {< M >s≤ t} ∈ Gt, so < M >s is a stopping time of Gt. Also, recall a theorem says limit sup
or inf of a sequence of stopping times is also a stopping time if the limit exists, so S is a stopping time of Gt as well.
Now consider the martingale M̃t = Mt∧T(s), there we have

< M̃ >t=< M >t∧T(s)≤< M >T(s)= s

So both M̃ and M̃2− < M̃ > are uniformly integrable. Now let s′ < s, then consider

E[MT(s) − MT(s′)|FT(s′)] = 0

E[
(

MTs − MT(s′)

)2
|FT(s′)] = E[< M >Ts − < M >Ts′ |FT(s′)]

so M̃t is a square integrable martingale with respect to Gt ≜ FT(t). Now let

Bt ≜ Wt − WS∧t + MT(t)

We note that by the same argument as in the theorem we have MT(t) is almost surely continuous, now

< B >t= t − S ∧ t+ < M >T(t)= t − S ∧ t + S ∧ t

os < B >t= t a.s..

3.5.C Girsanov Theorem

Problem (3.5.6). Assume the hypothese of theorem 5.1 and suppose Y is a measurable adapted provess satisfying P[
∫ T

0 Y2
t dt <

∞] = 1; 0 ≤ T < ∞. Under P we may define the Ito integral
∫ t

0 YsdW(i)
s , whereas under P̃ we may define the Ito integral∫ t

0 YsW̃
(i)
s , 0 ≤ t ≤ T. Show that for 1 ≤ i ≤ d we have∫ t

0
YsdW̃(i)

s =
∫ t

0
YsdW(i)

s −
∫ t

0
YsX(i)

s ds; 0 ≤ t ≤ T, P and P̃. a.s.
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Proof. Hint: Prop 2.24: M ∈ Mc,loc and X progressively measruable with
∫ t

0 X2
s d < M >s< ∞ a.s.. Then IM(X) is the

unique local martingale Φ such that for all N ∈ Mc,loc < Φ, N >t=
∫ t

0 Xud < M, N >u.
Now let’s use Proposition 5.4: Let N ∈ Mc,loc, and from Prop 5.4 we know that

Ñt ≜ Nt −
∫ t

0
X(i)

s d < N, W(i)
s >

is a local martinagle in M̃c,loc
T . From Prop 5.5 we know that every Ñ ∈ M̃c,loc

T has the above form. Now

<
∫ t

0
YsdW(i)

s −
∫ t

0
YsX(i)

s ds, Ñt > =<
∫ t

0
YsdW(i)

s , Nt > a.s.P and P̃T

Recall that W̃t ≜ W −
∫ t

0 X(i)
s ds, which is a standard Brownian Motion under P̃T . So consider

<
∫ t

0
YsdW̃s, Ñt > =

∫ t

0
Ysd < Ŵ, Ñ >t

=
∫ t

0
Ysd < W, N >t P̃T a.s.

Problem (3.5.7). Let T be a stopping time of the filtration {FW
t } with P[T < ∞] = 1. A neccessary and sufficient condition for

the validity of Wald Identity is

E[exp
(

µWT − 1
2

µ2T
)
] = 1

where µ is a given real number, that is

P(µ) [T < ∞] = 1.

In particular, if b ∈ R and µb < 0, then this condition holds for the stopping time

Sb ≜ inf {t ≥ 0; Wt − µt = b}

Proof. Let Z(t) ≜ exp
(

µWt − 1
2 µ2t

)
, then Z(t) is a Martingale, and P(µ) is defined to be

P(µ)(A) ≜ E[1AZ(t)] for A ∈ FW
t

Then now consider

P [T < ∞] = P

[⋃
n≥1

{T < n}
]

= lim
t→∞

P [T < t]

= lim
t→∞

E
[
1{T<t}Z(t)

]
= lim

t→∞
E
[
1{T<t}E (Z(t)|Ft∧T)

]
= lim

t→∞
E
(

1{T<t}Z(t ∧ T)
)

= lim
t→∞

E
[
1{T<t}Z(T)

]
= E[Z(T)]

where the last two equatilies are due to optional sampling and monotone convergence. This shows if and only if part
of the statement. The second part of the problem is given directly by the discussion above the problem.

Problem (4.5.8). Denote by

h(t; b, µ) ≜
|b|√
2πt3

exp
[
− (b − µt)2

2t

]
; t > 0, b ̸= 0, µ ∈ R

Use Theorem 2.6.16 to show that

h(·; b1 + b2, µ) = h(·; b1, µ) ∗ h(b·; b2, µ); b1b2 > 0, µ ∈ R

where ∗ denote the convolutions.
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Proof. Theorem 2.6.16 says that for almost surely finite stopping time S, we have BS+t − BS is a standard one dim
Brownian Motion with respect to its nature filtration when B itself is a Brownian Motion.

Now, h(t; b, µ) = P(µ) [Tb∈dt]
dt by R-N theorem. We know that Wt ≜ BTb1

+t − BTb1
is an standard one dim Brownian

Motion that is independent of FTb1
. Since since we have the condition b1b2 > 0, then Tb1+b2 = TW

b2
, so we have

Pµ
(
Tb1+b2 ∈ dt

)
= Pµ[TW

b1
+ Tb2 ∈ dt]

but we know that TW
b1

= Tb1 in measure. Hence we are done.

Excercise (3.5.9). With µ > 0 and W∗ ≜ inft>0 Wt, under Pµ the random variable −W∗ is exponentially distributed with
parameter 2µ, i.4.,

Pµ [W∗ ∈ db] = 2µe−2µb, b > 0

Proof. We look at

Pµ [−W∗ < b] = Pµ [T−b = ∞]

= 1 − Pµ [T−b < ∞]

then take the derivative we will get the desired answer. For this to work, µb > 0 must be satisfied.

Excercise (3.5.11). Consider for ν > 0 and c > 1, the stopping time of {FW
t }:

Rc = inf
{

t ≥ 0; exp
[

νWt −
1
2

ν2t
]
= c
}

Show that

P [Rc < ∞] =
1
c

, EνRc =
2 log c

ν2

Proof. Let Zν(t) ≜ exp
[
νWt − 1

2 ν2t
]
, and by Problem 2.28 it is a martinagle. Now consider

Pµ [Rc < ∞] ≜ E
[
X{Rc<∞}Z(Rc)

]
same as before

= P[Rc < ∞]c

Now we only need to show that Pµ [Rc < ∞] = 1. Note that

exp
[

νWt −
1
2

ν2t
]
= c ⇐⇒ ν

(
W̃t +

1
2

νt
)
= log(c)

Where W̃t is a one dim standard Brownian Motion under Pµ. By the assumption that c > 1, we see that Pµ (Rc < ∞) =
1.

Now for the second part, we use Walds Identity, we can use it because Z(t) is not only a martinagle, it is also a
positive super martinagle, therefore, by Problem 1.3.68 this process has a last element Z∞ and {Zt;Ft; 0 ≤ t ≤ ∞} is a
martinagle, hence by problem 1.3.19(20) it is a uniformly integrable family of random variable, hence we can use Walds.

Eν[W̃T ] = 0 ⇒ 0 = E[W̃t] =
log(c)

ν
− 1

2
νE[T]
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4 Brownian Motion and Partial Differential Equations

4.2 Harmonic Functions and the Dirichlet Problem

Problem (4.2.4). Suppose D is a bounded and connected, u is defined and continuous on D, and u is Harmonic in D. Show that
u attains its maximum over D on ∂D. If v is another function, Harmonic in D and continous on D, and v = u on ∂D, then v = u
on D as well.

Proof. By assumption, u is also Harmonic and continous on D◦, so by the Maximum Principle, we know that the sup
or max is accheived on the boudnary.

Now if v = u on ∂D and they are both Harmonic, then ω ≜ u− v is also Harmonic and ω ≡ 0 on ∂D. So supD ω = 0.
Also, −ω is also Harmonic and is zero on the boudnary, so supD −ω = 0 in D. so ω ≡ 0 in D, hence u = v on D.

Problem (4.2.16). Let D ⊂ Rd be open, and suppose that a ∈ ∂D has the property that there exists a point b ̸= a in R2\D, and
a simple arc in Rd\D connecting a to b. Show that a is regular.

Proof. Using Example 2.14 we can define a barrier at (0, 0) if we assume a = (0, 0) using the curve that connecting a and
b as a slid.

Problem (4.2.25). Consider as given an open, bounded subset D ⊂ Rd and the bounded, continous function g : D → R and
f : ∂D → R. Assume that u : D → R is continuous, of class C2(D), and solvese the Poisson Equation

1
2

∆u = −g

subject to the boudnary condition

u = f ; on ∂D

Then establish the representation

u(x) = Ex
(

f (WτD ) +
∫ τD

0
g(Wt)dt

)
; x ∈ D

In particular, the expected exit time from a ball is given by

Ex (τBr ) =
r2 − ∥x∥2

d
; x ∈ Br

Hint: Show that the process {Mt ≜ u(Wt∧τD ) +
∫ t∧τD

0 g(Ws)ds,Ft; 0 ≤ t < ∞} is a uniformly integrable martinagle.

Proof. First let’s invoke Ito’s formula:

u(Wt) = u(W0) +
∫ t

0

d

∑
i=1

∂u
∂xi

(Ws)dW(i)
s +

1
2

∫ t

0
∆u(Ws)ds

= u(W0) +
∫ t

0

d

∑
i=1

∂u
∂xi

(Ws)dW(i)
s −

∫ t

0
g(Ws)ds Px-x a.s. for all x ∈ D

Thereofre,

u(Wt∧τD ) +
∫ t∧τD

0
g(Ws)ds = u(W0) +

∫ t∧τD

0

d

∑
i=1

∂u
∂xi

(Ws)dW(i)
s Px a.s..

which is a martinagle. Now consider its quadratic variation:

< u(Wt∧τD ) +
∫ t∧τD

0
g(Ws)ds > =<

∫ t∧τD

0

d

∑
i=1

∂u
∂xi

(Ws)dW(i)
s >

=
∫ t∧τD

0

d

∑
i=1

(
∂u
∂xi

(Ws)

)2
ds
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and by the fact that ∥u∥L∞(D) < ∞ we see it is uniformly integrable by Problem1.5.24. Then the convergence theorem
of martinagles shows that this Poisson Problem as the desired representation as above.

For the second part of the problem, let −g = −1 and f (x) = r−∥x∥
2 on ∂Br, then u(x) = r2−∥x∥2

d is the analytic
solution to the Poisson Problem. Therefore, by the representation we have established so far, we have the following
equality:

r2 − ∥x∥
d

= Ex

(
r2 − ∥WτBr

∥2

d
+ τBr

)
= Ex (τBr )

Problem (4.2.26). Suppose we remove condition (2.14) in Proposition 2.7. Show that v(x) ≜ Px (τD = ∞) is harmonic in
D, and if a ∈ ∂D is regular, then limx→a;x∈D v(x) = 0. In particular, if every point of ∂D is regular, then with v(x) =
Ex [ f (WτD 1τD<∞)], the function u + λv is a bounded solution to the Dirichelet problem (D, f ) for any λ ∈ R. (It is possible to
show that every bounded solution to (D, f ) is of this form; see Port & Stone (1978), Theorem 4.2.12)./

Proof. Intuitively we have

Py (τD = ∞) = P0 (τD − τBr = ∞|WτBr
= y

)
= Px [τD = ∞|WτBr

= y
]

Therefore, ∫
∂(x+Br)

Py [τD = ∞] dµ(y) =
∫

∂[x+Br ]
Px [τD − τx+Br = ∞|Wτx+Br

= y
]

dµ(y)

=
∫

∂[x+Br ]
Px [τD − τx+Br = ∞] dµ(y) by independence

= Px[τD − τx+Br = ∞]

= Px[τD = ∞] since τBr+x < ∞

Now suppose a ∈ ∂D is regular, then from Theorem 4.2.12 (iii) we know that

lim
x→a;x∈D

Px (τD = ∞) ≤ lim
x→a;x∈D

Px (τD > ϵ) = 0 ∀ϵ > 0

Now suppose every point on the boundary is regular, then v would be harmonic in D and continuous on D. So
consider the other part

u ≜ Ex [ f (WτD ) 1τD<∞] = Ex [Ex [ f (WτD ) 1τD<∞|Fτx+Br

]]
= Ex [u(Wτx+Br

)
]

=
∫

∂(x+Br)
u(x + y)dµ(y)

hence u is a solution to (D, f ), so u + λv is the solution to (D, f ) since v has boudnary value zero.

Excercise (4.2.27). Let D be bounded with every boundary pont regular. Prove that every boundary point has a barrier.

Proof. Let a ∈ ∂D, and let f : ∂D → R be such that f > 0 on ∂D\{a} and f (a) = 0 be a continous bounded measurable
function (since ∂D would be compact here). Then the function defined by (2.12) would be harmonic in D, namely,

u(x) ≜ Ex ( f (WτD )) W is a standard one dim BM

Now, by Theorem 2.12 we see that u is continous on D. So the only thing left to show is that u is positive on D. First
we see that u is not constant since it has to agree with f on the boudnary. Also, notice that −u is also harmonic on D.
So let’s only look at the connected component of D such that a is in its boundary, call this region D̂. Then by maximum
principle on −u we see that −u(x) < 0 for all xıD̂. So we are done.

Excercise (4.2.28). A comoplex valued Brownian Motion is defined to be a process W = {W(1)
t + iW(2)

t ,Ft; 0 ≤ t < ∞}, where
W = {W(1)

t , W(2)
t ,Ft, 0 ≤ t, ∞} is a two dim Brownian motion and i =

√
−1:

• Use Theorem 3.4.13 to show that if W is a complex valued Brownian Motion and f : C → C is analytic and nonconstant,
then under an appropriate condition, f (W) is a complex valued Brownian Motion with a random time-change.
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• With ξ ∈ C\{0}, show that Mt ≜ ξeW , 0 ≤ t < ∞ is a time changed, complex valued Brownian motion. (Hint: use
Problem 3.6.30).

Proof. Fot the first part, I am sensing Cauchy Riemann Formula, so let’s use Ito’s Lemma first to u, v where f (x, y) =
u(x, y) + iv(x, y). We know from Cauchy Riemann that u, v must be harmonic, therefore, we have

w(Wt) = w(0) +
2

∑
i=1

∫ t

0
w(Ws)dW(i)

s

for w = u, v, therefore we see that

f (Wt) = f (0) +
2

∑
i=1

∫ t

0
uxi (Ws)dW(i)

s +
∫ t

0
ivxi (Ws)dW(i)

s

= f (0) +
2

∑
i=1

∫ t

0
fxi (Ws)dW(i)

s

so f (Wt) is a local martiangle, so is f (Wt) and the independence of the 1-dim Brownian Motions makes f (Wt) satisfies
the conditions for Thoerem 3.4.13.

For the second part, never read section 3.6, so not doing it.

4.3 The One-Dimensional Heat Equation

4.3.B. Nonnegative Solutions of the Heat Equation

Excercise (4.3.8). (Widder’s Uniqueness Theorem)

1. Let u(t, x) be a nonnegative function of class C1,2 defined on the strip (0, T)× R, where 0 < T ≤ ∞, and assume that u
satisfies (3.1) (the Heat Equation) on this strip and

lim
t↓0;y→x

u(t, y) = 0; x ∈ R.

Show that u = 0 on (0, T)× R. (Hint: Establish the uniform integrability of the martinagle u(t − s, Ws); 0 ≤ s < t.)

2. Let u be as in (1), except now assume that limt↓0,y→x u(t, y) = f (x); x ∈ R. Show that

u(t, x) =
∫

R
p(t; x, y) f (y)dy; 0 < t < T, x ∈ R.

Proof. (1) From Corollary 3.7 we see that {u(t − s, Ws);Fs, 0 ≤ s < t} is a martinagle on (Ω,F , Px) for all x ∈ R, and
u(t, x) = Ex [u(t − s, Ws)] for all 0 ≤ s < t < T, x ∈ R. The Ito’s lemma gives us

u(t − s, Ws) = u(t, W0) +
∫ s

0

∂u
∂x

(t − σ, Wσ)dWσ; Px-a.s.. ∀x ∈ R

lBy assumption we know that lims→t u(t − s, Wt)(ω) = 0 pointwise a.s. by continuity of Wt.
Honestly, I have no idea how to show it is uniformly integrable.However, we can decompose the measure induced

by F into the sum of two measures, one is absolutely continuous with respect to Lebesgue’s measure, and another one
is point measure, and use the properties of mollifier, uniformly convergence. So know that dF = dF′ + ∑n∈N δxn , where
dF′(x) = f (x)dx where dx represents Lebesgue measure. So we have

∫
R

1√
2πt

exp
(
− (x − y)2

2t

)
dF =

∫
R

1√
2πt

exp
(
− (x − y)2

2t

)
f (y)dy + ∑

n∈N

1√
2πt

exp
(
− (x − xn)2

2t

)
we send t → 0 and note that p(t; x, y) converges to zero uniformly outside of any ball centered at x when x ̸= y, so the
second part goes to zero. Note note that the first part is convolution between the mollifier and the measurable function
f , this convolution converges to f , hence f = 0 by assumption. Therefore we have the result. The second part can be
proven by the same method, but really, no idea how to prove it probabilistically.

Before we continue, let’s take a detour to Brownian Motion with absorption at zero.
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Problem (2.8.6). ] Derive the transition density for Brownian Motion absorbed at the origin {Wt∧T0 ;Ft, 0 ≤ t < ∞}, by
verifying that

Px [Wt ∈ dy, T0 > t] = p− (t; x, y) dy ≜ [p (t; x, y)− p (t; x,−y)] dy; s > 0, t ≥ 0, x, y > 0

Proof.

Px [Wt ∈ dy, T0 > t] = Px [Wt ∈ dy]− Px [Wt ∈ dy, T0 ≤ t]
= Px[Wt ∈ dy]− Px [Wt ∈ d(−y)]

pluge in the transition probability of Brownian Motion then we are done, where the last equality is given by the
Reflection Principle

4.4. The Formulas of Feynman and Kac

4.4.A The Multidimensional Formula

Excercise (4.4.6). Consider the Cauchy problem for the ”quasilinear” parabolic equation

∂V
∂t

=
1
2

∆V − 1
2
∥△V∥2 + k; in (0, ∞)× Rd

V(0, x) = 0; x ∈ Rd

(linear in ( ∂V
∂t ) and the Laplacian ∆V, nonlinear in the gradient △V), where k : Rd → [0, ∞) is a continuous function. Show

that the only solution V : [0, ∞)× Rd → R which is continuous on its domain, of class C1,2 on (0, ∞)× Rd, and satisfies the
quadratic growth condition for every T > 0:

−V(t, x) ≤ C + a∥x∥2; (t, x) ∈ [0, T]× Rd

where T > 0 is arbitrary and 0 < a < 1
2 Td, is given by

V(t, x) = − log Ex
[

exp
{
−
∫ t

0
k(Ws)ds

}]
Proof. Let t ≤ T and denote As = exp

{
−
∫ s

0 k(Wr)dr
}

and Bs = exp {−u(t − s, Ws)}, note that Bs has finite total
variation, so < B >t= 0, hence < A, B >t= 0. So by the stochastic version of integration by parts formula we have

dAsBs = AsdBs + BsdAs

where we know that dBs = −exp
{
−
∫ s

0 k(Wr)dr
}

k(Ws) since the integral is defined in Lebesgue’s sense. Now let’s use
Ito’s lemma on dAs.:

dAs =
∂u
∂t

(t − s, Ws)Asds + As

d

∑
i=1

∂u
∂xi

(t − s, Ws)dW(i)
s +

(
1
2
∥△u(t − s, Ws)∥ −

1
2

∆u(t − s, Ws)

)
Asds

= Ask(Ws)ds + As

d

∑
i=1

∂u
∂xi

(t − s, Ws)dW(i)
s

So we have

d(AsBs) = AsBsk(Ws)ds + AsBs

d

∑
i=1

∂u
∂xi

(t − s, Ws)dW(i)
s − AsBsk(Ws)ds

= As

d

∑
i=1

∂u
∂xi

(t − s, Ws)dW(i)
s

Now let Rn = inft≥0{∥Wt∥ ≥ n} and integrate this from 0 to t ∧ Rn and take expectation with repsect to Px for any
fixed x ∈ Rn to get

u(t, x) = Ex
[

exp
{
−u(t − t ∧ Rn, Wt∧Rn)−

∫ Rn∧t

0
k(Ws)ds

}]
= Ex

[
exp

{
−
∫ t

0
k(Ws)ds

}
1Rn>t

]
+ Ex

[
exp

{
−u(t − Rn, WRn)−

∫ Rn

0
k(Ws)ds

}
1Rn≤t

]
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Now the first term converges to Ex
[
exp

{
−
∫ t

0 k(Ws)ds
}]

by bounded convergence theorem since k ≥ 0. Now consider
the integrand of the second term: for some C > 0 we have

Ex
[

exp
{
−u(t − Rn, WRn)−

∫ Rn

0
k(Ws)ds

}
1Rn≤t

]
≤ Cean2

Px{Rn ≤ t}

≤ Cean2
(Px[Tn ≤ t] + Px[T−n ≤ t])d

= Cean2
(

P0[Tn−x ≤ t] + P0[T−n−x ≤ t]
)d

= C′ean2
(∫ ∞

|n+x|t−1/2
e−y2/2dy +

∫ ∞

|−n−x|t−1/2
e−y2/2dy

)d

Let’s denote nx = min{|n − x|, | − n − x|}, then above is less than the following

C′ean2
2

1
nx

e−
n2

x
2t

by the condition imposed on a, we see it goes to zero.

Excercise (4.4.7). Let ψ be the solution to

(α + k)ψ =
1
2

∆ψ + f ; on Rd

and let f : Rk → R and k : Rk → R+ be continous, with

Ex
[∫ ∞

0
| f (Wt)| exp

{
−αt −

∫ t

0
k(Ws)ds

}
dt < ∞

]
; ∀x ∈ Rd,

for some α > 0, the same α as in the definition of ψ. Now let’s define z to be

z(x) = Ex
[∫ ∞

0
f (Wt) exp

{
−αt −

∫ t

0
k(Ws)ds

}
dt
]

.

If ψ is bounded, show that ψ = z; if ψ is nonnegative, then ψ ≥ z. (Hint: Use Problem 2.25).

Proof. Let’s first try the usual method for proving uniqueness: suppose ψ is a bounded solution, we show that it must
of of the form of z, then we should be done here. Let At =

∫
exp

{
−αt −

∫ t
0 k(Ws)ds

}
and consider (reason same as

the previous problem):

d [ψ(Wt)At] = Atdψ(Wt) + ψ(Wt)dAt

where dAt = −At(α + k) and

dψ(Wt) =
d

∑
i=1

∂ψ

∂xi
(Wt)dW(i)

t +
1
2

∆ψ(Wt)dt

=
d

∑
i=1

∂ψ

∂xi
(Wt)dW(i)

t + (α + k(Wt))ψ(Wt)− f

combine them to get

d [ψ(Wt)At] = Atdψ(Wt) + ψ(Wt)dAt

= At

d

∑
i=1

∂ψ

∂xi
(Wt)dW(i)

t − At f

Now integrate from 0 to infinity, we can do this because we have the integrable condition. By the assumption that ψ is
(uniformly) bounded, taking expectation with respect to Px, we get the desired result.
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Chapter 5 Stochastic Differential Equations

5.2. Strong Solutions

Problem (5.2.7). Suppose g(t) is continuous and satisfies

0 ≤ g(t) ≤ α(t) + β
∫ t

0
g(s)ds; 0 ≤ t ≤ T

with β ≥ 0 and α : [0, T] → R integrable. Then

g(t) ≤ α(t) + β
∫ t

0
α(s)eβ(t−s)ds; 0 ≤ t ≤ T0

Proof. Denote G(t) ≜
∫ t

0 g(s)ds, then the above inequality reads

G′(t) ≤ α(t) + βG(s)

⇒ d
dt

e−βtG(t) = e−βtG′(t)− βe−βtG(t) ≤ e−βtα(t)

Now integrate on both sides from 0 to t with dummy variable s we have

e−βtG(t) ≤
∫ t

0
e−βsα(s)ds ⇒ G(t) =

∫ t

0
g(s)ds ≤

∫ t

0
eβ(t−s)α(s)ds

Put this back into the original inequality we shall get the desired result.

Problem (5.2.10). For every T, show that there existst C > 0 depending only on K and T such that for the interations:

X(n+1)
t = ξ +

∫ t

0
b(s, X(n)

s )ds +
∫ t

0
σ
(

s, X(n)
s

)
dWs; 0 ≤ t < ∞

for all n ≥ 0 where X(0)
t ≡ ξ, where σ and b satisifes the global Lipschitz and linear growht conditions, namely:

∥b(t, x)− b(t, y)∥+ ∥σ(t, x)− σ(t, y)∥ ≤ K∥x − y∥,

∥b(t, x)∥2 + ∥σ(t, x)∥2 ≤ K2
(

1 + ∥x∥2
)

with initial condition ξ being square integrable. Show that we have

E[∥X(k)
t ∥2] ≤ C

(
1 + E∥ξ∥2

)
eCt

Proof.

E[∥X(k)
t ∥2] ≤ C

E∥ξ∥2 + E

∫ t

0
∥b(s, X(k−1)

s )∥2ds +
d

∑
i=1

E

[
d

∑
j=1

∫ t

0
σ(i,j)

(
s, X(k−1)

s

)
dW(j)

s

]2


≤ C

(
E∥ξ∥2 + E

∫ t

0
∥b(s, X(k−1)

s )∥2ds +
d

∑
i=1

E

[
d

∑
j=1

∫ t

0
σ(i,j)

(
s, X(k−1)

s

)2
dW(j)

s

])

= C
(

E∥ξ∥2 + E

∫ t

0
∥b(s, X(k−1)

s )∥2ds +
∫ t

0
∥σ(s, X(k−1)

s )∥2ds
)

≤ C
(

E

[
∥ξ∥2 + K2

∫ t

0
1 + ∥X(k−1)

s ∥2ds
])

= CE∥ξ∥2 + CK2t + CK2
∫ t

0
E∥X(k−1)

s ∥ds

Note that here C is independent of k. Note that t ≤ T, so we can obsorbe t and K into C, the simplified inequality reads

E[∥X(k)
t ∥2] ≤ C(1 + E∥ξ∥2) + C

∫ T

0
E[∥X(k−1)

s ∥2ds

Iterating this inequality gives us the desired result, where the Taylor expansion would kick in.
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Problem (5.2.11). Show that the process constructed in the proof of Theorem 5.2.10 satisfies requirement:

Xt = ξ +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs

Proof. In the proof, Xt is constructed as a pointwise sup limit of X(k) on any finite interval [0, T], that is,

sup
t∈[0,T]

∥Xt(ω)− X(k)
t (ω)∥ → 0; ∀T > 0.

From this condition we see that ∫ t

0
∥b(s, Xs)− b(s, X(k)

s )∥ds ≤
∫ t

0
K2∥Xs − X(k)

s ∥ds

≤ TK2 sup
t∈[0,T]

∥Xt − X(k)
t ∥

which converges to zero a.s.. By simimar arugument we see that

lim
k→∞

E

[
∥
∫ t

0
σ(s, Xs)− σ(s, X(k)

s )ds∥2
]
≤ lim

k→∞
E

[∫ t

0
∥σ(s, Xs)− σ(s, X(k)

s )∥2ds
]

≤ lim
k→∞

E

[∫ t

0
K2∥Xs − X(k)

s ∥2ds
]

By (2.15) and (2.17), we can use Dominated Convergence theorem to move the limit inside the integral and see it goes
to zero since we have uniformly convergence for each ω. So the second term converges to the corresponding ”X term”
in L2(Ω,F , P), hence converges in probability.

So far we have X(k) converges to X a.s. and X(k) converges to ξ +
∫ t

0 b(s, Xs)ds +
∫ t

0 σ(s, Xs)dWs in probability, so
those two things are equal a.s..

Excercise (5.2.17). The stochastic equation

Xt = 3
∫ t

0
X

1
3
s ds + 3

∫ t

0
X

2
3
s dWs

has uncountably many strong solutions of the form

Xθ
t =

{
0; 0 ≤ t < βθ

W3
t ; βθ ≤ t < ∞

where 0 ≤ θ ≤ ∞ and β ≜ inf{s ≥ θ; Ws = 0}.

Proof. In another words, Xθ
t = 1t≥βθ

W3
t = W3

t − W3
t∧βθ

. Use Ito’s formula we have

W3
t = 3

∫ t

0
W2

s dWs + 3
∫ t

0
Wsds

W3
t∧βθ

= 3
∫ t

0
W2

s∧βθ
dWs + 3

∫ t

0
Ws∧βθ

ds

so

Xt = 3
∫ t

0
W2

s − W2
s∧βθ

dWs + 3
∫ t

0
Ws − Ws∧βθ

ds

Observe that

Ws − Ws∧βθ
=

{
0 when t < βθ

Ws when βθ ≤ t < ∞
= X

1
3
s

and

W2
s − W2

s∧βθ
=

{
0 when t < βθ

W2
s when βθ ≤ t < ∞

= X
2
3
s

so we have the desired result for θ ∈ R+. When θ = 0, then Xt = W3
t which solves the equation, and when θ = ∞, then

Xt ≡ 0 is the trivial solution.
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Excercise (5.2.19). Suppose that in Proposition 2.18 we drop condition (v) but strengthen condition (iv) to

b1(t, x) < b2(t, x); 0 ≤ t < ∞, x ∈ R

Then the conclusion (2.32) still holds. Hint: For each integer m ≥ 3, construct a Lipschitz-continuous function bm(t, x) such that
b1(t, x) ≤ bm(t, x) ≤ b2(t, x).

Proof. Let’s say E
∫ t

0 |σ(s, Xs)|2ds < ∞. Define

∆t ≜ X(1) − X(2) =
∫ t

0
{b(s, X(1)

s )− b(s, X(2)
s )}ds +

∫ t

0
{σ(s, X(1)

s )− σ(s, X(2)
s )}dWs

Note that we have the condition

|σ(t, x)− σ(t, y)| ≤ h|x − y| ∀x ∈ R+; x, y ∈ R

where h : [0, ∞) → [0, ∞) is a strictly increasing function with h(0) = 0o and∫
(0,ϵ)

h−2(x)dx = ∞, ∀ϵ > 0

That means there exists a positive and strictly decreasing sequence {αn} such that αn ↓ 0 such that
∫ αn

αn+1
h−2(x)dx = n

for all n ≥ 1. Now by Urysoln or variation of it, there exists a function ρn for each n such that 0 ≤ ρn(x) ≤ 2
nh(x) wiht∫ αn

αn+1
ρn(x)dx = 1 and ρn(x)’s support is contained in (αn+1, αn).

We now define the following function

φn(x) = 1[0,∞)(x)
∫ x

0

∫ y

0
ρn(u)dudy

so φ is continuously twice differentiable and |φ′| < 1 by the property of ρn. Also, limn→∞ φn(x) = x. Futhermore, the
sequence {φn} is nondecreasing.

Now, let f (t, x) ≜ 1
2 (b1(t, x) + b2(t, x)), and ηϵ be a set of mollifiers (in usual sense) and define fϵ ≜ f ∗ ηϵ. So fϵ is

also smooth hence Lipschitz-continous in a compact subset of R+ × R. For each m ≥ 3, let ϵn be so small such that fϵm

is between b1 and b2 on the set 0 ≤ t ≤ m and |x| ≤ m (we can do this because of the uniformly convergence) and let
bn ≜ fϵn . Now let R(i)

m = inft≥0{|X
(i)
t | = m} and let Rm = R(1)

m ∧ R(2)
m .

Now let τ be any positive number and t = τ ∧ Rm, then by the same argument, we can have the relation

Eφn(∆t)−
t
n
≤ E

∫ t

0
φ′

n(∆s)
[
b1(s, X(1)

s − b1(s, X(2)
s )
]

= E

[∫ t

0
φ′

n(∆s)[b1(t, X(1)
s )− bm(t, X(1)

s )]ds
]

+E

[∫ t

0
φ′

n(∆s)[bm(t, X(1)
s )− bm(t, X(2)

s )]ds
]

+E

[∫ t

0
φ′

n(∆s)[bm(t, X(2)
s )− b2(t, X(2)

s )]ds
]

≤ E

[∫ t

0
φ′

n(∆s)[bm(t, X(1)
s )− bm(t, X(2)

s )]ds
]

≤ Km

∫ t

0
E[∆+

s ]ds

Let n → ∞ and use Gronwall inequality we see that E[∆+
t ] = 0. Now, since t depends on m as well, we vary m and use

tm instead to indicate this dependency. As m → ∞, by DCT we have desired result.

Excercise (5.2.20). Suppose that the coefficients σ : R → (0, ∞) and b : R → R are of class C2, C1 respectively; that b′ −
1
2 σσ′′ − bσ′

σ is bounded; and that 1
σ is not integrable at either ±∞. Then

Xt = ξ +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs; 0 ≤ t < ∞

has a unique, strong solution X. (Hint: Consider the function f (x) =
∫ x

0
du

σ(u) and apply Ito’s rule to f (Xt).)
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Proof. I guess we are also assuming that f given by the hint is defined when x ̸= ±∞, Picard’s Iteration method might
not work, so try the hint first:

f (Xt) = f (ξ) +
∫ t

0

b(Xs)

σ(Xs)
ds + Wt −

1
2

∫ t

0
σ′(Xs)ds

= f (ξ) +
∫ t

0

b(Xs)

σ(Xs)
− 1

2
σ(Xs)ds + Wt

Note that d
dx

(
b(x)
σ(x) −

1
2 σ(x)

)
= 1

σ(x)

(
b′(x)− 1

2 σ′′(x)− σ′(x)b(x)
σ(x)

)
. We need some boundedness condition of 1

σ .

Excercise (5.2.27). Solve explicitly the one-dimensional equation

dXt =

(√
1 + X2

t +
1
2

Xt

)
dt +

√
1 + X2

t dWt

Proof. Let σ(x) =
√

1 + x2 and b(x) = σ(x) + 1
2 x. We see that

b(x)
σ(x)

− 1
2

σ′(x) = 0

Using the notation from Excercise 5.2.20 we get

d f (Xt) = dWt

and suppose X0 = 0 a.s., then f (Xt) =
∫ Xt

0
du

σ(u) = ln
(

Xt +
√

1 + X2
t

)
= Wt. Solve to get

Xt =
1
2

e−Wt(e2Wt − 1)

Excercise (5.2.28). 1. Suppose that there exists an Rd-valued function u(t, y) = (ui(t, y))1≤i≤d of class C1,2([0, ∞)× Rd),
such that

∂ui
∂t

(t, y) = bi(t, u(t, y)),
∂ui
∂xj

(t, y) = σi,j(t, u(t, y)); 1 ≤ i, j ≤ d

hold on [0, ∞) × Rd, where each bi(t, x) is continuous and each σi,j is of class C1,2 on [0, ∞) × Rd. Show then that the
process

Xt ≜ u(t, Wt); 0 ≤ t < ∞

where W is a d-dimensional Brownian motion, sovles the Fisk-Stratonovich equation

dXt = b(t, Xt)dt + σ(t, Xt) ◦ dWt

2. Use the above result to find the unique, strong solution of the one-dimensional Ito equation

dXt =

[
2

1 + t
Xt − a(1 + t)2

]
dt + a(1 + t)2dWt; 0 ≤ t < ∞

Proof. Recall the Fisk-Stratonovich Integral is defined for semi-Mtgs X, Y as∫ t

0
Ys ◦ dXs ≜

∫ t

0
Ys Ms +

∫ t

0
YsdBs +

1
2
< N, M >t; 0 ≤ t < ∞

where the meaning of each term is apperant. So turn the SDE in Ito’s sense, we need to solve

dXt = b(t, Xt)dt + σ(t, Xt)dWt + d < σ(·, X·), W· >t

Now we use Ito’s Formula on u(t, Wt):

du(t, Wt) =
∂u
∂t

(t, Wt)dt +
d

∑
i=1

∂u
∂xi

(t, Wt)dWt +
1
2

d

∑
i=1

∂2u
∂x2

i
(t, Wt)dt

= b(t, u(t, Wt))dt + σ(t, u(t, Wt))dWt +
1
2

d

∑
i=1

∂2u
∂x2

i
(t, Wt)dt

The definition of σ(t, Xt) ◦ dWt is unclear since σ is a matrix so the quadratic variation makes no sense. Howevere if
the quadratic variation is defined to be ∑d

j=1 σi,j(t, Xt)dW j
t , then we are done here.
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5.3. Weak Solutions

5.3.B. Weak Solutions by Means of the Girsanov Theorem

Problem (5.3.13). Consider the stochastic differential equation

dXt = b(t, Xt)dt + σ(t, Xt)dWt

with σ(t, x) be a d× d nonsingular matrix for all t ≥ 0, x ∈ Rd. Assume that b(t, x) is uniformly bounded, the smallest eigenvalue
of σ(t, x)σtr(t, x) is uniformly bounded away from zero, and the equation

dXt = σ(t, Xt)dWt; 0 ≤ t ≤ T

has a weak solution with initial distribution µ. Show that the first equation also has a weak solution for 0 ≤ t ≤ T with initial
distribution µ.

Proof. Let’s say that the problem meant σ(t, x) has smallest eigenvalue uniformly bounded away from zero, since it is
this case on the PDF and it makes the problem easier. In this case, σ(t, x) is invertible and the eigenvalues of σ−1(t, x)
is uniformly bounded, hence σ−1(t, x)b(t, x) is also uniformly bounded since b is uniformly bounded.

Let Zt = exp
{

∑d
i=1
∫ t

0 ∑d
j=1 σ−1

i,j (s, Xs)bj(s, Xs)dWs − 1
2

∫ t
0 ∥σ−1(s, Xs)b(s, Xs)∥2ds

}
, by Corollary 3.5.13 we see that

Zt is a martinagle for 0 ≤ t ≤ T where Wt is the Brownian motion in the weak solution of the second SDE. Define P̃ by
P̃(A) = E[1A AT ] for all A ∈ FT , then we see that

W̃t = Wt −
∫ t

0
σ−1(s, Xs)b(s, Xs)ds; 0 ≤ t ≤ T

is a Brownian motion under (Ω,FT , P̃). Writing it as componentwise as the following

W̃(i)
t = W(i)

t −
∫ t

0

d

∑
j=1

σ−1
i,j bj(s, Xs)ds; 1 ≤ i ≤ d

is a standard one dimensional Brownian motion under the same probability space. Now denote
ci(t, Xt) ≜ ∑d

j=1 σ−1
i,j (t, Xt)bj(t, Xt).

By Problem 3.5.6 we see that for all Ys such that P[
∫ t

0 Y2
s ds < ∞] = 1 for 0 ≤ t ≤ T, then we have

YtdW̃i
t = YtdWi

t − Ytci(t, Xt)dt; 0 ≤ t ≤ T, a.s.P, P̃

Assume WLOG that
∫ t

0 ∥σs∥ds < ∞ a.s.. So in matrix form we have

σ(t, Xt)dW̃t = σ(t, Xt)dWt − b(t, Xt)dt

= dXt − b(t, Xt)dt; P, P̃

Since P and P̃ agree on F0, then we are done here, and the solution is (Ω,Ft, P̃) and Xt, W̃t.

Problem (5.3.15). Suppose bi(t, y), σij(t, y); 1 ≤ i ≤ d and 1 ≤ j ≤ r are progressively measurable functionals from [0, ∞)×
C[0, ∞)d into R satisfiying

∥b(t, y)∥2 + ∥σ(t, y)∥2 ≤ K
(

1 + max
0≤s≤t

∥y(s)∥2
)

; ∀0 ≤ t < ∞, y ∈ C[0, ∞)d,

where K is a positive constant. If (X, W), (Ω,F , P), {Ft} is a weak solution to

dXt = b(t, X)dt + σ(t, X)dWt

with E∥X0∥2m < ∞ for some m ≥ 1, show that for any finite T ≥ 0, we have

E[max
0≤s≤t

∥Xs∥2m] ≤ C
(

1 + E∥X0∥2m
)

eCt; 0 ≤ t ≤ T

E[∥Xt − Xs∥2m] ≤ C
(

1 + E[∥X0∥2m]
)
(t − s)m; 0 ≤ s < t ≤ T

where C is a positive constant depending only on m, T, K, d.
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Proof. Under corresponding probability space and Brownian Motion, we have

Xt = X0 +
∫ t

0
b(s, X)ds +

∫ t

0
σ(s, X)dWs

Now by Problem 3.3.29 and Remark 3.3.30 and Funini’s

E∥max
0≤s≤t

∫ s

0
σ(u, X)dWu∥2m ≤ Λm

∫ t

0
E[∥σ(s, X)∥2m]ds ≤ Λm

∫ t

0
E

[
1 + max

0≤s≤t
∥Xs∥2

]m

and

E

(
∥
∫ t

0
b(s, X)ds∥2m

)
≤
∫ t

0
E

(
1 + max

0≤s≤t
∥Xs∥2

)m
ds

(a + b)m =
(

2a 1
2 + 1

2 b
)m

≤ 2m−1am + 2m−1bm by Jessen’s. Let’s denote Bt ≜ E
[
max0≤s≤t∥Xs∥2m], so we have

Bt ≤ C
(

2E[∥X0∥2m] + 2ΛmDt + 2ΛmD
∫ t

0
Bsds

)
≤ C(2E[∥X0∥2m] + 1) + C

∫ t

0
Bsds

For some C, D where the C’s in each line could be different. Then by Gronwall we are done.
Now for the next assersion, is a direct consequence of the first one with the fact that et−s ≥ t − s for t > s.

5.4. The Martinagle Problem of Stroock and Varadhan

A. Some Fundamental Martingales

Problem (5.4.3). Let bi(t, y), σij(t, y) : [0, ∞)× C[0, ∞)d → R be progressively measurable functionals for all 1 ≤ i ≤ d, 1 ≤
j ≤ r. We define the diffusion matrix a(t, y) with components

ai,k ≜
r

∑
j=1

σij(t, y)σkj(t, y); 0 ≤ t < ∞, y ∈ C[0, ∞)d.

Suppose that (X, W), (Ω,F , P), {Ft} is a weak solution to the functional stochastic differential equation

dXt = b(t, X)dt + σ(t, X)dWt

and set that

(A′
t)(y) =

1
2

d

∑
i=1

d

∑
k=1

aik(t, y)
∂2u(y(t))

∂xi∂xk
+ ∑

1≤i≤d
bi(t, y)

∂u(y(t))
∂xi

;

0 ≤ t < ∞, u ∈ C2(Rd), y ∈ C[0, ∞)d

Then show that for any function f , g ∈ C[0, ∞)× Rd ∩ C1,2((0, ∞)× Rd), the process

M f
t =≜ f (t, Xt)− f (0, X0)−

∫ t

0

[
∂ f
∂s

+A′
s f
]
(s, X)ds, Ft; 0 ≤ t < ∞

is in Mc,loc, and

< M f , Mg >t= ∑
1≤i,j≤d

∫ t

0
aik(s, X)

∂ f
∂xi

(s, Xs)
∂g
∂xk

(s, Xs)ds.

Furthermore, if f ∈ C0([0, ∞)× Rd) and for each 0 < T < ∞ we have

∥σ(t, X)∥ ≤ KT ; 0 ≤ t ≤ T, y ∈ C[0, ∞)d,

Where KT is a constant depending on T, then f ∈ Mc
2.
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Proof. By definition we have

Xt = X0 +
∫ t

0
b(s, X)ds +

∫ t

0
σ(s, X)dWs; 0 ≤ t < ∞; a.s.∫ t

0
{|bi(s, X)|+ σ2

i,j(s, X)}ds < ∞ a.s..

let Sn ≜ inft≥0{∥Xt∥ ≥ n or
∫ t

0 ∥σ(s, X)ds ≥ n∥}. In this case, since b and σ are progressively measruable, then Xt∧Sn is
a Martinagle hence Xt is a semi-martinagle. Now let’s apply Ito’s formula to f (Xt):

f (t, Xt) = f (0, X0) +
∫ t

0

∂ f
∂t

(s, X)ds + ∑
1≤i≤d

∫ t

0

∂ f
∂xi

(s, Xs)bi(s, X)ds + ∑
1≤i≤d

∫ t

0

∂ f
∂xi

(s, Xs)d(
d

∑
j=1

σij(s, X)dW j
s)

+
1
2 ∑

1≤i≤d
∑

1≤j≤d

∫ t

0

∂2 f
∂xi∂xj

(s, Xs)d < ∑
1≤k≤d

∫ s

0
σi,k(u, X)dWk

s , ∑
1≤k≤d

∫ s

0
σj,k(u, X)dWk

s >

simplify above to get

f (t, Xt) = f (0, X0) +
∫ t

0

∂ f
∂t

(s, X)ds + ∑
1≤i≤d

∫ t

0

∂ f
xi

(s, Xs)bi(s, X)ds + ∑
1≤i≤d

∑
1≤j≤d

∫ t

0

∂ f
∂xi

(s, Xs)σij(s, X)dW j
s

+
1
2 ∑

1≤i,j≤d

∫ t

0

∂2 f
∂xi∂xj

(s, Xs)
d

∑
k=1

σik(s, X)σjk(s, X)ds

So if we add the notation ai,j and A′
t, the above equation becomes

f (t, Xt)− f (0, X0) =
∫ t

0

∂ f
∂t

(s, Xs)ds +
∫ t

0
(A′

s fs)(Xs)ds + ∑
1≤i,j≤d

∫ t

0

∂ f
∂xi

(s, Xs)σij(s, X)dW j

so M f
t = ∑1≤i,j≤d

∫ t
0

∂ f
∂xi

(s, Xs)σij(s, X)dW j is a local Mtg with stopping time Sn.
For the second assersion,

< M f , Mg >t =< ∑
1≤i,j≤d

∫ t

0

∂ f
∂xi

(s, Xs)σij(s, X)dW j, ∑
1≤i,j≤d

∫ t

0

∂g
∂xi

(s, Xs)σij(s, X)dW j >

=< ∑
1≤j≤d

∫ t

0
∑

1≤i≤d

∂ f
∂xi

(s, X)σij(s, X)dWj, ∑
1≤j≤d

∫ t

0
∑

1≤k≤d

∂g
∂xk

(s, Xs)σkj(s, X)dWj >

= ∑
1≤j≤d

∫ t

0

(
∑

1≤i≤d

∂ f
∂xi

σij(s, X)

)(
∑

1≤k≤d

∂g
∂xk

σkj(s, X)

)
ds

= ∑
1≤i,j≤d

∫ t

0
aik(s, X)

∂ f
∂xi

(s, Xs)
∂g
∂xk

(s, Xs)ds

For the third assertion, if the norm of σ is bounded for 0 ≤ t ≤ T, then the stochastic integral is defined by the
boundedness of σ with either progressively measurable or the absolutely continuous of the quadratic variation of the
Brownian motion, so we do need the stopping time anymore.

Problem (5.4.4). A continuous, adapted process W = {Wt,Ft, 0 ≤ t < ∞} is a d-dimensional Brownian motion if and only if

f (Wt)− f (W0)−
1
2

∫ t

0
∆ f (Ws)ds, Ft; 0 ≤ t < ∞

is in Mc,loc for every f ∈ C2(Rd).

Proof. =⇒ is a direct result of Multidimensional Ito’s Formula.
⇐= Now suppose the defined process is a local martinagle for every f ∈ C(Rd), then in particular, it is a local

martinagle when f (x) = xi and f (x) = xixj for 1 ≤ i, j ≤ d. Then the desried result is a derict consequence of Levy’s
characterization of Brownian motion.
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Def (5.4.24). A collection D of Borel- Measurable functions φ : Rd → R is called a determining class on Rd if for any two finite
measures µ1, µ2 on B(Rd), the identity ∫

Rd
φdµ1 =

∫
Rd

φdµ2

implies µ1 = µ2.

Problem (5.4.25). Show that the collection C∞
0 (Rd) is a determining class of Rd.

Proof. Direct consequence of Stone-Wairstrass or Riesz Representation.

Supplementary Exercises

Excercise (5.4.33). Assume that the coefficients bi : Rd → R and σij : Rd → R; 1 ≤ i ≤ d, 1 ≤ j ≤ r are measurable and
bounded on compact subsets of Rd, and let A be

A f (x) ≜
1
2

d

∑
i=1

d

∑
k=1

alk(x)
∂2 f (x)
∂xi∂xk

+
d

∑
i=1

bi(x)
∂ f (x)

∂xi

Let X = {Xt,Ft, 0 ≤ t < ∞} be a continuous process on some probability space (Ω,F , P) and assume the filtration satisfies the
usual conditions. With f ∈ C2(Rd) and α ∈ R, introduce the processes

Mt ≜ f (Xt)− f (X0)−
∫ t

0
A f (Xs)ds, Ft; 0 ≤ t < ∞

Λt ≜ e−αt f (Xt)− f (X0) +
∫ t

0
e−αs (α f (Xs)−A f (Xs)) ds, Ft; 0 ≤ t < ∞

and show that M ∈ Mc,loc ⇔ Λ ∈ Mc,loc. If f is bounded away from zero on compact sets and

Nt ≜ f (Xt) exp
{
−
∫ t

0

A f (Xs)

f (Xs)
ds
}
− f (X0), Ft; 0 ≤ t < ∞

then thses two conditions are also equivalent to N ∈ Mc,loc.

Proof. Assuming M is a local Martingale, then by the Integration by Parts formula from Problem 3.3.12 we see that

e−αt f (Xt) = f (X0) +
∫ t

0
e−αsd f (Xs) +

∫ t

0
f (Xs)de−αs

= f (X0) +
∫ t

0
e−αsdMs +

∫ t

0
e−αsA f (Xs)ds − α

∫ t

0
e−αs f (Xs)ds

rearranging terms to get the desired result. Now for the reverse direction,

f (Xt) = f (X0) +
∫ t

0
eαsd

(
e−αs f (Xs)

)
+
∫ t

0
e−αs f (Xs)deαs

= f (X0) +
∫ t

0
eαsdΛt −

∫ t

0
α f (Xs)−A f (Xs)ds + α

∫ t

0
f (Xs)ds

and rearranging the terms to get the desired result.
For the last equivalence relation, let’s first note that the integral in exp

{
−
∫ t

0
A f (Xs)

f (Xs)
ds
}

is defined for almost all
ω ∈ Ω in Lebesgue sense, so this is a stochastic process with finite variation. With that said, let’s apply integration by
parts formula here while assuming M is a local martingale:

f (Xt) exp
{
−
∫ t

0

A f (Xs)

f (Xs)
ds
}

=
∫ t

0
exp

{
−
∫ s

0

A f (Xu)

f (Xu)
du
}

d f (Xs)−
∫ t

0
f (Xs)

A f (Xs)

f (Xs)
exp

{
−
∫ s

0

A f (Xu)

f (Xu)
du
}

ds + f (X0)

=
∫ t

0
exp

{
−
∫ s

0

A f (Xu)

f (Xu)
du
}

dMs +
∫ t

0
exp

{
−
∫ s

0

A f (Xu)

f (Xu)
du
}
A f (Xs)ds

−
∫ t

0
A f (Xs) exp

{
−
∫ s

0

A f (Xu)

f (Xu)
du
}

ds + f (X0)

=
∫ t

0
exp

{
−
∫ s

0

A f (Xu)

f (Xu)
du
}

dMs + f (X0)

The other direction is the same thing, so omit.

37



Excercise (5.4.34). Let (X, W), (Ω,F , P), {Ft} be a weak solution to the funcitonal stochastic differential equation

dXt = b(t, X)dt + σ(t, X)dWt

where we assume that

∥b(t, y)∥+ ∥σi,j∥ ≤ KT ; 0 ≤ t ≤ T, y ∈ C[0, ∞)d

for all 0 < T < ∞ where KT is a constant depending on T. For any continuous function f : R+ × Rd → R of class
C1,2((0, ∞)× Rd) and any progressively measurable process {kt,Ft, 0 ≤ t < ∞}, show that

Λt ≜ f (t, Xt) exp
{
−
∫ t

0
kudu

}
− f (0, X0)−

∫ t

0

(
∂ f
∂s

+A′
s f − ks f

)
exp

{
−
∫ s

0
kudu

}
ds,Ft; 0 ≤ t < ∞

is in Mc,loc. If, furthermore, f and its indicated derivatives are bounded and k is bounded from below, then Λ is a martinagle.

Proof. Let’s assume we are working with the bounded case since for general case, we can define a stopping time such
that the stopped process makes all those functions bounded, or simply put, localization.

Now, from Problem 5.4.3 we see that

M f
t ≜ f (t, Xt)− f (0, X0)−

∫ t

0

[
∂ f
∂s

+A′
s f
]
(s, Xs)ds, Ft, 0 ≤ t < ∞

is a martinagle for all f ∈ C1,2((0, ∞) × Rd) that has bounded derivatives. Therefore, once again we can use the
integration by part formula by realizing that exp

{
−
∫ t

0 kudu
}

is a stochastic process with finite variation when k is
bounded below, therefore,

d f (t, Xt) exp
{
−
∫ t

0
kudu

}
= f (t, Xt)d exp

{
−
∫ t

0
kudu

}
+ exp

{
−
∫ t

0
kudu

}
d f (t, Xt)

= − f (t, Xt)kt exp
{
−
∫ t

0
kudu

}
dt + exp

{
−
∫ t

0
kudu

}
dM f

t

+ exp
{
−
∫ t

0
kudu

}(
∂ f
∂t

+A′
t f
)
(t, Xt)dt

combine the terms we can see the desired result.

Excercise (5.4.35). Let the coefficients b, σ be bounded on compact subsets of Rd, and assume that for each x ∈ Rd, the time-
homogeneous martinagle problem

E

(
f (y(t))− f (y(s))−

∫ t

s
(A f )(y(u))du|Bs

)
= 0

has a solution Px. Suppose that there exists a function f : Rd → [0, ∞) of class C2(Rd) such that

A f (x) + λ f (x) ≤ c, ∀x ∈ Rd

holds for some λ > 0, c ≥ 0. Then

Ex f (y(t)) ≤ f (x)e−λt +
c
λ
(1 − e−λt); 0 ≤ t < ∞, x ∈ Rd.

Proof. By assumption, under Px, the process M f
t ≜ f (y(t))− f (y(0))−

∫ t
0 A′ f (y)ds is a martinagle with respect to the

filtration given. Now take the expectation under Px to get

Ex f (Xt) = Ex
[

f (X0) +
∫ t

0
A f (Xs)ds

]
≤ Ex

[
f (X0) + tc −

∫ t

0
λ f (Xs)ds

]
= f (x) + ct −

∫ t

0
λEx [ f (Xs)] ds

by Fubini since f ≥ 0. Now apply Gronwall’s inequality to obtain

Ex f (Xt) ≤
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Problem. this Consider µ, δ ∈ R, and a standard one-dim Brownian Motion W and let Wµ
t = Wt + µt; 0 ≤ t < ∞. Show that

the process

Xt =
∫ t

0
exp

[
δ{Wµ

t − Wµ
s } −

1
2

δ2(t − s)
]

Satisfies the Shiryaev-Roberts stochastic integral equation

Xt =
∫ t

0
(1 + δµXs)ds + δ

∫ t

0
XsdWs.

Proof. Let ηt = δWt − 1
2 δ2t + δµt, then η is a semi-Mtg, and note that

∫ t
0 exp(ηs)ds is an increasing process. Therefore,

we can use Ito’s lemma, the multi-dim version. Set f (x1, x2) = exp(x1)x2, and Xt = f (ηt,
∫ t

0 exp(−ηs)ds), so we have

Xt = f (ηt,
∫ t

0
ηsds) =

∫ t

0
exp(ηs)

∫ s

0
exp(−ηu)du(µ − 1

2
δ)δds +

∫ t

0
exp(ηs − ηs)ds

+
1
2

δ2
∫ s

0
exp(ηs)

∫ s

0
exp(ηu)duds +

∫ t

0
exp(ηs)

∫ s

0
exp(−ηu)dudWs

=
∫ t

0
δµXsds + t + δ

∫ t

0
XsdWs

So we are done.

Problem (Wald’s Identity). Let {Bs} be the one-dim standard Brownian Motion, and let T be a stopping time. Show that if
either

(i) E[T] < ∞
(ii) or {E[Bt∧T ]} is bounded in L1

Then we have

E[BT ] = 0

E[B2
T ] = E[T]

Proof. Note {Bt∧T} is also a Mtg, and if (ii) is true, then this martingale is uniformly integrable, hence has a last element.
Then by martingale convergence theorem, we have

E[BT ] = lim
t→∞

E[Bt∧T ] = 0

So, we can can show that (i) implies (ii), then we have the first wald’s identity. We can write BT in the following form:

|BT | = |
⌊T⌋

∑
k=1

Bk − Bk−1 + BT − B⌊T⌋|

≤
⌊T⌋

∑
k=1

|Bk − Bk−1|+ |BT − B⌊T⌋|

≤
⌊T⌋

∑
k=1

max
0≤t≤1

|Bk−1+t − Bk−1|+ max
0≤t≤1

|B⌊T⌋+t − B⌊T⌋|

=
⌈T⌉

∑
k=0

max
t∈[0,1]

|Bk+t − Bk|

=
∞

∑
0

1⌊T⌋≥k max
t∈[0,1]

|Bk+t − Bk|

We can do this since T(ω) < ∞ on set of measure 1. For T(ω) = ∞, then the floor and ceiling are just ∞ and we don’t
have the last terms in the first three lines.
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Note also that maxt∈[0,1] |Bk+t − Bk| =d maxt∈[0,1] |Bt − B0| = maxt∈[0,1] |Bt|, therefore, we have

E|BT | ≤ E[
∞

∑
k=0

1T≥k max
t∈[0,1]

|Bt+k − Bk|]

=
∞

∑
k=0

E[1T≥k max
t∈[0,1]

|Bt+k − Bk|] Fubini, since positive

=
∞

∑
k=0

P[T ≥ k]E[max
t∈[0,1]

|Bt+k − Bk|]

=
∞

∑
k=0

P[T ≥ k]E[max
t∈[0,1]

|Bt − B0|]

= E[max
t∈[0,1]

|Bt − B0|]
∞

∑
k=0

P[T ≥ k]

= E[max
t∈[0,1]

|Bt|]E[T] < ∞

The finiteness is due to the identity P[max0≤t≤T Bt ≥ a] = 2P[Bt ≥ a] and max0≤t≤T Bt > 0 a.s. and

E[X] =
∫ ∞

0
P[X ≥ a]dx

Note that E[|Bt∧T |] is bounded above by the above, hence it is uniformly integrable.
Now for the second identity. Let Mt = B2

t − t is a Mtg, and Sn = Tn ∧ T is a stopping time, where Tn = mint{|Bt| =
n}. Therefore, Mt∧Sn is also a mtg. Observe that

|B2
t∧Sn

− t ∧ Sn| ≤ n2 + T which is integrable

So by Optional Sampling we have

E[Tn ∧ T] = E[B2
Tn∧T ]

Note that we have Tn ∧ T ≤ T, Take the n → ∞, the left side becomes E[T] by DCT. Now consider the following

E[B2
T ] = E[(BT − BSn + BSn)

2]

= E[(BT − BSn)
2] + 2E[(BT − BSn)BSn ] + E[B2

Sn
]

Note that by Strong Markov Property, (Bt − BSn) ⊥ SSn is another Brownian Motion. So by the first Wald’s Identity, we
have E[BT − BSn ] = 0, hence the middle term is zero, therefore, we obtain the identity

E[B2
T ] = E[(BT − BSn)

2] + E[B2
Sn
] ≥ E[B2

Sn
]

Therefore, limn→∞ E[B2
Sn
] ≤ E[B2

T ]. Since limn→∞ BTn(ω)∧T(ω)(ω) = BT(ω)(ω)a.e., then by Fatou’s Lemma, we have

E[B2
T ] ≤ lim inf E[BSn ] = lim inf E[Tn ∧ T] = E[T]

By DCT or MCT. So we are done.

Problem (3.3.35 More General Wald’s Lemma). In the context of Wald’s Lemma (problem above), but now under the condition
E[

√
T] < ∞, establish the Wald’s Identity

E[WT ] = 0, E[W2
T ] = E[T]

Proof. By Mtg Moment Inequality, we have

E[|Bt∧T |] ≤ CE[
√

T ∧ t] ≤ C′E[
√

T]

For some C′ finite. Therefore, |Bt∧T | is bounded in L1, hence uniformly integrable. Hence we can use Mgt Convergence
theorem to take t → ∞, we we have the first identity.

For the second identity, note that E[
√

T] < ∞ still gives the condition that T < ∞ a.s, so the argument above follows
exactly the same. But for exercise, I’ll try to reproduce the same argument:
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Let Tn be the hitting time of |Bt| = n, hence limn→∞ BTn∧T = BT at least a.s. and consider

E[B2
T ] = E[(BT − BTn∧T + BTn∧T)

2]

= E[(BT − BTn∧T)
2] + E[(BTn∧T)

2] + 2E[(BT − BTn∧T)BTn∧T)]

By the strong Markov property, BTn∧T+t − BTn∧T is an Brownian Motion that is independent of BTn∧T , and by the
first Wald’s identity, we have E[BT − BTn∧T ] = 0, hence the last term vanishes. Therefore, we have E[B2

T ] = E[(BT −
BTn∧T)

2] + E[(BTn∧T)
2]. So limn→∞ E[B2

Tn∧T ] ≤ E[B2
T ]. However, by Fatou’s Lemma we also have

E[BT ] ≤ lim inf E[BTn∧T ] = lim inf E[Tn ∧ T] = E[T]

The last equality is because B2
Tn∧t −Tn ∧ t is bounded in L1, hence uniformly integrable + Mtg Convergence theorem.

Problem (excercise 3.3.36 (M. Yor)). Let R be a Bessel process with dim d ≥ 3, starting at r = 0. Show that {Mt ≜ 1
Rd−2

t
; 1 ≤

t < ∞}
(i) Is a local Mtg;
(ii) Satisfies sup1≤t<∞ E[Mp

t ] < ∞ for all 0 < p < d
d−2 (and thus is uniformly integrable);

(iii) Is not a martingale.

Proof. (i) Need to find {Tn} that increases to ∞ a.s. such that Mt∧Tn are martingales for all n. Ito’s lemma might be a
good way to go, but Rt might be zero, so if those stopping time can bound it away from zero, then it might work. Let
f (x) = 1

∥x∥ = 1

(∑d
k=1 x2

k )
d
2 −1

and let’s x is bounded away from zero, then

∂ f
∂xi

=
(2 − d)xi

∥x∥d ; fxi ,xi = (d − 2)(d
x2

i
∥x∥d+2 − (d − 2)

1
∥x∥d )

So apply Ito’s Lemma we have

Mt = M1 +
d

∑
k=1

(2 − d)
∫ t

1

Wk
s

(∑d
k=1(Wk

s )
2)d/2

dWk
s +

1
2

d

∑
k=1

∫ t

1
(d − 2)(d

(Wk
s )

2

Rd+2
s

− (d − 2)
1

Rd
s
)ds

= M1 +
d

∑
k=1

(2 − d)
∫ t

1

Wk
s

(∑d
k=1(Wk

s )
2)d/2

dWk
s

which is definitely a mtg. So only need to find the stopping time, Tn =
∫

t{Mt >
1
n} would work.

(ii) From the Mtg Moment Inequality, we have

E[Mp
t ] ≤ E[< M >

p
2
t ] = (2 − d)

p
2 E[

∫ t

1

1

(∑d
i=1 W(i)2

s )d−1
ds]

Problem (5.4.33). Assume bi, σi,j : Rd → R for 1 ≤ i, j ≤ d are measurable and bounded on compact sets of Rd, and let A be
associated operator

A ≜
1
2 ∑

1≤i,j≤d
ai,j ∂2 f (x)

∂xi∂xj
+ ∑

1≤i≤d
bi(x)

∂ f (x)
∂xi

Let X = {Xt,Ft, 0 ≤ t < ∞} be a continuous process on some prob space (Σ,F , P) and assume Ft satisfies the usual conditions.
With f ∈ C2(Rd) and α ∈ R, introduce the process

Mt ≜ f (Xt)− f (X0)−
∫ t

0
A f (Xs)ds,Ft, 0 ≤ t < ∞

and

Λt ≜ e−αt f (Xt)− f (X0)−
∫ t

0
e−αs(α f (Xs)−A f (Xs)ds,Ft, 0 ≤ t < inf
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and show that M ∈ Mc,loc ⇔ Λ ∈ Mc,loc. If f is bounded away from zero on compact sets, and

Nt ≜ f (Xt) exp
{
−
∫ t

0

A f (Xs)

f (Xs)
ds
}
− f (X0),Ft, 0 ≤ t < ∞

then these two conditions are also equivalent to N ∈ Mc,loc.(Hint: from the integration by parts formula we have if M ∈ Mc,loc

and Ct is a continuous process of bounded variation, then Ct Mt −
∫ t

0 MsdCs =
∫ t

0 CsdMs is in Mc,loc.)

Proof. First assume Mt be a local martingale, and let Ct = e−αt and use the hint:

MtCt = e−αt f (Xt)− e−αt f (X0)− e−αt
∫ t

0
A f (Xs)ds

and ∫ t

0
MsdCs = −α

∫ t

0
e−αs f (Xs)− e−αs f (X0)− e−αs

∫ s

0
A f (Xu)duds

So we have a representation of the following martingale:∫ t

0
e−αsdMs = e−αt f (Xt)− e−αt f (X0)− e−αt

∫ t

0
A f (Xs) + α

[
e−αs f (Xs)− e−αs f (X0)− e−αs

∫ s

0
A f (Xu)du

]
ds

Here we assume WLOG that f (X0) = 0, then∫ t

0
e−αsdMs = e−αt f (Xt)− e−αt

∫ t

0
A f (Xs)ds + α

∫ t

0
e−αs f (Xs)ds − α

∫ t

0

∫ s

0
e−αsA f (Xu)duds

Now consider the double integral

α
∫ t

0

∫ s

0
e−αsA f (Xu)duds = α

∫ t

0

∫ t

u
e−αsA f (Xu)dsdu

=
∫ t

0
e−αuA f (Xu)du −

∫ t

0
e−αtA f (Xu)du

Now change u to s and replace the double integral we have
∫ t

0 e−αsdMs = Λt, hence a local martingale.
Now let’s say Λt is a local martingale, by assuming f (X0) = 0 and letting Ct = eαt, we have:

ΛtCt = f (Xt)− eαt
∫ t

0
e−αsα f (Xs)− e−αsA f (Xs)ds∫ t

0
ΛsdCs = α

∫ t

0
f (Xt)− eαs

∫ s

0
e−αuα f (Xu)− e−αuA f (Xu)duds

Again, consider the double integral∫ t

0

∫ s

0
αeαs−αu (α f (Xu)−A f (Xu)) duds

=
∫ t

0

∫ t

u
αeαs−αu (α f (Xu)−A f (Xu)) dsdu

=eαt
∫ t

0
e−αs (α f (Xs)−A f (Xs)) ds −

∫ t

0
(α f (Xs)−A f (Xs)) ds

But this back into the original expression, then we have

Mt = ΛtCt −
∫ t

0
ΛsdCt

which is also a local martingale. Note that the equivalent relation is true for all α ∈ R.
Now let f (x) > γA > 0 where A ⊆ Rd is compact.
Some observations:

d exp
{
−
∫ t

0

A f (Xs)

f (Xs)
ds
}

= − exp
{
−
∫ t

0

A f (Xs)

f (Xs)
ds
}

A f (Xt)

f (Xt)
dt
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in Lebesgue’s sense. For
∫ t

0
A f (Xs)

f (Xs)
ds, we can decompose the integrand into positive and negative parts, call them

B+, B−. We can write the integral as
∫ t

0 B+
s ds −

∫ t
0 B−ds, the difference between two pathwise nondecreasing processes,

so derivative with respect to time makes sense. Now recall the integration by part formula: If Xt = X0 + Mt + Bt and
Yt = Y0 + Nt +Ct, where M, N ∈ Mc,loc and B, C are continuous adapted processes with bounded variation with initial
values zero, then we have ∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs− < M, N >t

Note this also gives us a differential form for Product Rule, that is

d(XsYs) = XsdYs + YsdXs + d < M, N >s

Now, let Yt be the exponential term, then using the product rule, we have the following:

d [ f (Xt)Yt] = Ytd f (Xt) + f (Xt)dYt

= Ytd
(

Mt +
∫ t

0
A f (Xt)

)
− f (Xt)(

A f (Xt)

f (Xt)
Ytdt)

= YtdMt + YtA f (Xt)dt −A f (Xt)dt
= YtdMt

which gives a local Martingale. Now, suppose Nt = f (Xt) exp
{
−
∫ t

0
A f (Xs)

f (Xs)
ds
}

be a local martingale. So the goal is to

turn Mt = f (Xt)−
∫ t

0 A f (Xs)ds into some form of ZtdNt. We have

dMt = d f (Xt)−A f (Xt)dt

= dNt exp
{∫ t

0

A f (Xt)

f (Xt)

}
−A f (Xt)dt

= exp
{∫ t

0

A f (Xt)

f (Xt)

}
dNt + Nt exp

{∫ t

0

A f (Xt)

f (Xt)

}
A f (Xt)

f (Xt)
dt −A f (Xt)dt

= exp
{∫ t

0

A f (Xt)

f (Xt)

}
dNt + f (Xt)

A f (Xt)

f (Xt)
dt −A f (Xt)dt

= exp
{∫ t

0

A f (Xt)

f (Xt)

}
dNt

Hence also a Martingale.

Problem (5.4.34). Let (X, W), (Ω, ,F , P),Ftbe a weak solution to the functional stochastic differential equation

dXt = b(t, X)dt + σ(t, X)dW

where condition ∥b(t, y)∥+ ∥σi,j(t, y)∥ ≤ KT where y ∈ C[0, ∞)d hold for all T ≥ 0, where KT is a constant depending on T.
For any continuous function f : [0, ∞)× Rd → R of class C1,2 and any progressively measurable process {kt,Ft, 0 ≤ t < ∞},
show that

Λt ≜ f (t, Xt) exp
{
−
∫ t

0
kudu

}
− f (0, X0)−

∫ t

0

(
∂ f
∂s

+A′
s f − ks f

)
exp−

∫ s
0 kudu ds

with Ft is in Mc,loc. If, furthermore, f and its indicates derivatives are bouned and k is bouneded from below, then Λ is a
martingale.

Proof. Again, assume WLOG that f (0, X0) = 0. From problem 4.3 we have M f
t is a martingale for all f ∈ C1,2, where

M f
t is defined as follows:

M f
t ≜ f (t, Xt)−

∫ t

0

[
∂ f
∂s

+A′
s f (s, Xs)

]
(s, Xs)ds

when kt is progressively measurable (I am not sure why progressively measurable is important), as before, the expo-
nential term has finite variation, where we have

dΛt = exp
{
−
∫ t

0
kudu

}
d f (t, Xt)− f (t, Xt) exp

{
−
∫ t

0
kudu

}
ktdt −

(
∂ f
∂t

(t, Xt) +A′
t f (t, Xt)− kt f (t, Xt)

)
exp

{
−
∫ t

0
ksds

}
dt
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Where d f (t, Xt) = dM f
t + ( ∂ f

∂t (t, Xt) + A′
t f (t, Xt))dt. Let’s omit the arguments of functions for convinience, and let

Yt = exp
{
−
∫ t

0 kudu
}

. Therefore

dΛt = YtdM f
t +

[
Yt

∂ f
∂t

+ YtA′
t f
]

dt − f Ytktdt − ∂ f
∂t

Yt −A′
t f Ytdt + kt f Ytdt

= YtdM f
t

which is a local martingale. If we have the boundedness condition, then also by problem 5.4.3, we have M f
t is a

martingale, hence Λt is a martingale as well.

Problem (5.4.35). Let the coefficients b, σ be bouned on compact subsets of Rd, and assume that for each x ∈ Rd, the time
homogeneous martingale problem of Def 4.15 has a solution Px satisfying (4,22). Suppoes that there exists a function f : Rd →
[0, ∞) of class C2(Rd) such that

A f (x) + λ f (x) ≤ c, ∀x ∈ Rd

holds for some λ > 0 and c ≥ 0. Then

Ex[ f (y(t))] ≤ f (x)e−λt +
c
λ
(1 − e−λt); 0 ≤ t < ∞, x ∈ Rd

Proof. Being a solution of time homogeneous martingale problem, we have

E

[
f (y(t))− f (y(s))−

∫ t

s
A f (y(u))du|Bs

]
= 0 Pa.s.

and Px[y(0) = x] = 1. So f (Xt) −
∫ t

0 A f (Xs)ds is a martingale where Xt is the coordinate mapping process of
continuous function in Rd. Assume WLOG that f (x) = 0, and denote Ex[ f (Xt)] as Zt, then we have the following

Zt = E[M f
t +

∫ t

0
A f (Xs)ds]

= E[
∫ t

0
A f (Xs)ds]

≤ E[
∫ t

0
ct − λ f (Xs)ds]

= ct − λ
∫ t

0
Zsds Fubini’s since f ≥ 0

Then by Gronwall’s we have

Zt ≤ cte−λt ≤ c
λ
(1 − e−λt)

Not sure how to prove the last inequality, but it is true.

Problem (5.7.3). Let A be elliptic in the open bounded domain D, and k, g : D → R and f : ∂D → R Let u be the solution fo
the Dirichlet problem: {

Au − ku = −g; in D
u = f ; on ∂D

Let τD ≜ inf{t ≥ 0; Xt /∈ D}. If

ExτD < ∞; ∀x ∈ D

Show that under (7.2)-(7.4), we have

u(x) = Ex
[

f (XτD ) exp
{
−
∫ τD

0
k(Xs)ds

}
+
∫ τD

0
g(Xt)exp

{
−
∫ τD

0
k(Xs)ds

}
dt
]

for every x ∈ D.
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Proof. First, Xt, P,Ft is a weaks solution of

X(t,x)
s = x +

∫ s

t
b(X(t,x)θ

s )dθ +
∫ s

t
σ(X(t,x)

s )dWθ

I think this problem assumes t = 0, hence its just a usual SDE, hence it omit a class of martingales for any u ∈ C1,2:

Mu
t = u(Xt)− u(x)−

∫ t

0
Au(Xs)ds

since P(X0) = x a.s. Hence

du(Xt) = Mu
t +

∫ t

0
Au(Xs)ds

this is due to Prop 4.11. Therefore, by the integration by parts formula we have:

du(Xt) exp
{
−
∫ t

0
k(Xs)

}
= exp

{
−
∫ t

0
k(Xs)

}
du(Xt)− k(Xt) exp

{
−
∫ t

0
k(Xs)

}
u(Xt)dt

= exp
{
−
∫ t

0
k(Xs)

}
dMu

t + exp
{
−
∫ t

0
k(Xs)

}
[Au(Xt)dt − k(Xt)u(Xt)] dt

= exp
{
−
∫ t

0
k(Xs)

}
dMu

t − exp
{
−
∫ t

0
k(Xs)

}
g(Xt)dt

Integrate both sides from 0 to T ∧ τ and take expectation to get

Ex
[

u(XT∧τ) exp
{
−
∫ T∧τ

0
k(Xs)

}]
− u(x) = E

[
−
∫ T∧τ

0
exp

{
−
∫ t

0
k(Xs)

}
g(Xs)ds

]
By bounded convergence theorem, take T → ∞ to get the desired result.

Problem (5.7.7). In the case of bounded coefficients, i.e.

|bi(t, x)|+
r

∑
j=1

σ2
i,j(t, x) ≤ ρ, 0 ≤ t < ∞, x ∈ Rd, 1 ≤ i ≤ d

Show that the polynomial condition (7.14) in Theorem 7.6 may be replaced by

max
0≤t≤T

|v(t, x)| ≤ Meµ∥x∥2
, x ∈ Rd

for some M > 0 and 0 < µ < 1
18 ρTd (Hint: Use problem 3.4.12)

Proof. Hint says if Xt = x + Mt + Ct where Mt ∈ Mc,loc, Ct a continuous process with bounded variation, and if
|Ct|+ < Mt >≤ ρt, then for fixed T and large n we have

P

[
max

0≤t≤T
|Xt| ≥ n

]
≤ exp

{
−n2

18ρT

}
so the proof is exactly the same, but use the result of the hint problem instead of Chebyshev’s inequality.

I am done with the first read!
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