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0.1. THEOREMS ON MEASURES 7

0.1 Theorems on Measures

Given two probability measures, we would like to know under what condition they agree on a σ
algebra (field). Two measures agreeing on the generator of the measure is not a sufficient condition
for those two measures agreeing on the entire σ algebra. So natural question to ask is that are there
some sub-family of the entire σ field such that if two probability measures agree on the family, then
they agree on the σ field? There are, here are two of them:

Definition 0.1.1 (Monotone Class). Let F be a σ algebra, let G ⊂ F , we say G is a monotone class if it
is closed under countably infinite intersections of decreasing sets and closed under countably many unions of
increasing sets. That is,

1. {Ai}i∈N ⊂ G with Ai ⊂ Ai+1, then
⋃

i≥0 Ai ∈ G.

2. {Ai}i∈N ⊂ G with Ai ⊃ Ai+1, then
⋂

i≥0 Ai ∈ G.

We list this useful theorem w/o proof, which can be found in ([LG16],[Bil08],[Dur19])

Theorem 0.1.1. Let F be a collection of sets that is closed under finite intersection, then the smallest
monotone class contains F is equal to the σ algebra generated by F .

Here is why the theorem is useful:

Theorem 0.1.2. Let (E,F ) be a measurable space, and let A ⊂ F where σ(A) = F and A closed under
finite intersections and unions. Then if µ and ν, two σ finite measures, agrees on A, then they agree on F .

The proof of this theorem is called a monotone class argument:

Proof. By continuity of measures (from below and above), we see

G ≜ {A ∈ F : µ(A) = ν(A)} (1)

is a monotone class that contains A, so σ(A) ⊂ G by monotone class theorem.

The second sub-families of sets that gives us similar results are

Definition 0.1.2 (λ-system). Let X be a set, and L ⊂ P(X) where P denotes the power sets (collection of
all sets), then we say L is a λ-sysmte if

1. ∅ ∈ L;

2. L is closed under complement;

3. l is closed under countable disjoint unions.

Definition 0.1.3 (π-system). Let X be a set, and P ⊂ P(X) where P denotes the power sets (collection of
all sets), then we say P is a π-sysmte if it is closed under finite intersections.

The following theorem is called the π − λ theorem, also stated w/o proof:

Theorem 0.1.3 (π − λ Theorem). Let P be a π system and L be a λ system. Suppose P ⊂ L, then
σ(P) ⊂ L.

Here is why it is useful:

Theorem 0.1.4. Let µ, ν be two probability measures on the measurable space (Ω,F ), and say µ and ν agree
on a π system, call it P, that generates F , then ν, µ agree on the whole σ field.

Proof. Let ν, µ be probability measure and denote the following set

A ≜ {E ∈ F : µ(E) = ν(E)}
then we note A is a λ system since ∅ ∈ A, and if µ(A) = ν(A), then µ(Ac) = 1 − µ(A) =
1 − ν(A) = ν(Ac), and it is also closed under countable disjoint unions, so A ⊃ σ(P) = F .
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0.2 Inequalities

Proposition 0.2.1 (Fatou’s Lemma). Let {Xn} be random variables with Xn ≥ 0 a.s. for all n, then∫
Ω

lim infn→∞XndP ≤ lim infn→∞

∫
Ω

XndP

Definition 0.2.1 (Convex function). Let φ : B → R, where B is a topological vectors space on R. we say
φ is convex if

φ(rx + (1 − r)y) ≤ rφ(x) + (1 − r)φ(y), ∀x, y ∈ B, r ∈ [0, 1].

Proposition 0.2.2 (Jessen’s Inequality). Let φ be a positive convex function and let |X| be an integrable
random variable, then we have

φ(E[|X|]) ≤ E(φ(|X|))

Remark 0.2.1. We can often use Jessen’s Inequality to determine integrability of random variables. Jessen’s
Inequality is true in more general space, such as locally convex topological vector space, or any vector space
where we can use Hanh-Banach.

Proof. We prove this in locally compact topological vectors space that has a probability measure P.
Let C = {(x, y) ∈ B × R : y > φ(x)}, so C consists of all the points that is ”strictly above”

the graph of φ. Note that C is a convex set: (xi, yi) ∈ C where i = 1, 2, then γy1 + (1 − γ)y2 >
γφ(x1) + (1 − γ)φ(x2). Now let A = {(s, φ(s))} which is obviously convex. By Hanh-Banach
separation theorem, there is a hyperplane in B × R that separates C, A, that is, there are a ∈ B′ and
c ∈ R such that

a(s) + cφ(s) = b; a(x) + by ≥ b, ∀(x, y) ∈ B.

That is, there is an affine function fs(x) = a(x) + b such that fs(s) = φ(s) and φ(x) ≥ fs(x) (where
we used continuity of a(·) to extend the Inequality given by Hanh-Banach to the boudnary of C).

Now let s = E[|X|], then one has the following:

E[φ(|X|)] ≥ E[ fs(|X|)] = fs(E[|X|]) = φ (E[X|X|]) .

Proposition 0.2.3 (Chebyshev-Markov). Let φ : R → R+ be a strictly increasing on (0, ∞), even and
convex function and let X be a random variable and suppose E[φ(X)] finite then

P[|X| ≥ λ] ≤ E[φ(X)]

φ(λ)

Proof.

E[φ(X)] =
∫

Ω
φ(X)dP ≥

∫
|X|≥λ

φ(X)dP ≥ φ(λ)P[|X| ≥ λ].

There is a special case of Chebyshev-Markov that will be useful later:
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Proposition 0.2.4. Let X be a random variable such that var(X) < ∞ and has mean µ, then

P[|X − µ| ≥ ϵ] ≤ var(X)

ϵ
.

Proof.

We note that Chebyshev Markov can be made more general in Lp for 0 < p < ∞ in the sense
that φ does not have to be convex

Proposition 0.2.5. Let X be a random variable such that E[|X|r] < ∞ for some positive r, then

P[|X| ≥ λ] ≤ E[|X|r]
λr .

Proof.

P[|X| ≥ λ] =
∫
|X|≥λ

1dP =
∫
|X|≥λ

λr

λr dP ≤
∫
|X|≥λ

|X|r
λr dP ≤ E[|X|r]

λr

Remark 0.2.2. In application, usually use φ(·) = | · |m for m ∈ N so we can bound the tail probability by
the moments.

Remark 0.2.3. On independence: There are two notion of independence of a sequence of random variables
{Xn}

• (complete) independence: P (
⋂

n∈I{Xn ∈ An}) = ∏n∈I P (Xn ∈ An) for any index set I .

• Pairwise independence: P ({Xn ∈ An} ∩ {Xm ∈ Am}) = P ({Xn ∈ An})P ({Xm ∈ Am}).

We note that independence implies Pairwise independence, but the converse is not true by the following
example.

Example 0.2.1. Let Xi i = 1, 2, 3 independent random variable taking values in {0, 1} with probability half
and half, and let A1 = {X1 = X2}, A2 = {X1 = X3}, A3 = {X2 = X3}. Then clearly Ai’s are pairwise
independent but not complete independent, which can be seen simply by σ-algebra they generates.

0.3 Modes of Convergence

Definition 0.3.1. Convergence a.e or almost surely; Convergence in probability: limn→∞ P[|Xn − X| >
ϵ] = 0, ∀ϵ > 0; convergence in Lp, p ≥ 1: limn→∞ E|Xn − X|p = 0, weak convergence/convergence
in distributions:

∫
Ω f (x)dµn(x) →

∫
Ω f (x)dµ(x) for all bounded continous (Cc, C∞

c all works) where
µn = P ◦ X−1

n the pushforward measure, same for µ, the pushforward measure for X.

Here is a useful characterization of a.s. convergence

Proposition 0.3.1. Let (E, | · |) be a complete metric space the random variables are taking values on E.
{Xn} be sequence of random variables converges to X a.s. if and only if

lim
m→∞

P (|Xn − X| > ϵ, ∀n ≥ m) = 1, ∀ϵ > 0, (2)

or equivalently,

lim
m→∞

P (|Xn − X| ≤ ϵ for some n ≥ m ) = 0, ∀ϵ > 0.
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Proof. I will use the first limit. (=⇒) Suppose Xn → X a.e., then ∃Ω0 ⊂ Ω with P[Ω0] = 1 and for
all ω ∈ Ω0, limn→∞ |Xn(ω)− x(ω)| = 0. Translating this into set theory language is

P

(⋃
m

⋂
n≥m

{|Xn − X| > ϵ}
)

= 1 (3)

where
⋃

m
⋂

n≥m An is called lim inf An, and this reads ” there exists m such that for all n ≥ m, An
happens”. We observe that ∩n≥m{|Xn − X| > ϵ} is a family of increasing set, so by continuity of
measure, this direction is proven.

(⇐=) Now suppose (2) holds, then by continuity of the measure, (3) also hold.

Remark 0.3.1. Obviously, convergence in probability (measure) is weaker than convergence a.e.

Proposition 0.3.2. Convergence in Lp for p ≥ 1 implies convergence in probability.

Proof. Suppose limn→∞ E
(
|Xn − X|p

)
= 0, then

P (|Xn − X| ≥ ϵ) ≤ E[|Xn − X|p]
ϵp → 0, ∀ϵ > 0.

Remark 0.3.2. Convergence a.e. can also be formulated in terms of Cauchy sequence: Xn → X a.s. if and
only if

lim
k→∞

P[|Xn − Xm| ≥ ϵ; for all n, m ≥ k] = 0

We note that the converse of (7) can be true when Xn’s are ”nice” in sense of sequence of
functions:

Theorem 0.3.1. Let {Xn} be a sequence that is dominated by some integrable random variable Y and suppose
Xn → X in probability (measure), the Xn → X in Lp when X ∈ Lp.

Proof.

E[|Xn − X|p] =
∫

Ω
|Xn − X|pdP

=
∫
|Xn−X|≥ϵ

|Xn − X|pdP +
∫
|Xn−X|<ϵ

|Xn − X|pdP

≤ (P[|Xn − X| ≥ ϵ])
1
p ∥X + Y∥p + ϵp → ϵp

where in the last Inequality we used Holder, and this holds for arbitrary small ϵ.

0.4 Borel-Cantelli

Definition 0.4.1. Here we define the limit sup/inf in set theoritical setting:

lim sup An =
⋂

m≥0

⋃
n≥m

An; lim inf An =
⋃

m≥0

⋂
n≥m

An.

It is convenient to understand
⋃

as ”exists” and
⋂

as ”for all” in elementary analysis settings, and under
stand {An} as a sequence of ”events”. Also, lim sup can be understood as An happens infinitely often,
denote as I.O.
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Proposition 0.4.1 (Borel-Cantelli Lemma 1). For any sequence of measurable set {En} in a probability
space, we have

∑
n∈N

P[En] < ∞ ⇒ P[En, I.O] = P[lim sup En] = P

( ⋂
m≥0

⋃
n≥m

En

)
= lim

m→∞]
P

( ⋃
n≥m

Em

)
= 0

Proof. Note

∑
n≥m

P[En] ≥ P

( ⋃
n≥m

En

)
→ 0

due to convergence of the sum.

There is a converse to the first B-C lemma, with some restrictions on {En} of course, otherwise
they would be made into one lemma:

Proposition 0.4.2 (Borel-Cantelli 2). Suppose {Em} are independence events, then the converse of (8) is
true, namely,

∞

∑
n=0

P[En] = ∞ ⇒ P[En, I.O] = lim
m→∞

P

( ⋃
n≥m

En

)
= 1.

Proof. Here we use the identity (lim sup En)
c = lim inf Ec

n, and we show that lim inf Ec
n has measure

zero.

P

(( ⋂
m≥0

⋃
n≥m

En

)c)
= P

( ⋃
m≥0

⋂
n≥m

Ec
n

)

= lim
m→∞

P

( ⋂
n≥m

Ec
n

)

≤ lim
m→∞

lim
k→∞

P

( ⋂
m≤n≤k

Ec
n

)
= lim

m→∞
lim
k→∞

∏
m≤n≤k

P (Ec
n)

= lim
m→∞

lim
k→∞

∏
m≤n≤k

(1 − P (En))

By the divergence of the sum given, we see the inner limit goes to zero (heuristically, since the
convergence of infinite product is defined by the sum of log).

If we combine the two B-C lemmas, then we obtain a zero one law:

Proposition 0.4.3. Suppose {En} is a sequence of independence events, the

P (lim sup En) ∈ {0, 1}

This is because a infinite sum with positive summants either converges or diverges.
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Remark 0.4.1. There are severl applications of Borel-Cantelli Lemmas, one of which is use it to determine
convergence of a random variable; we can also use Borel-Cantelli to construct a almost surely convergence
subsequence from a convergent sequence of random variables in probability, which I will describe in the
following two lemmas.

Lemma 0.4.1. Let {Xn} be a sequence of random variables, then Xn converges to X if

∑
n∈N

P[|Xn − X| ≥ ϵ] < ∞ ∀ϵ > 0.

And if {Xn} is a collection of independent random variables, then it converges to zero if and only if

∑
n∈N

P[|Xn| ≥ ϵ] < ∞ ∀ϵ > 0.

The above lemma will be made more general in the zero-one law that will appear later.

Lemma 0.4.2. For all Xn that converges in probability, there is a subsequence converges a.e. to the same
random variable.

Proof. Here we will construct such subsequence from {Xn}. By assumption, there is X such that

lim
n→∞

P[|Xn − X| > ϵ] = 0, ∀ϵ > 0.

Then for all k ∈ N there is Xnk such that P[|Xnk − X| > ϵ] ≤ 1
k2 . Note that this subsequence {Xnk}

satisfies the condition for (1), so it converges a.e.
Another such construction: assume WLOG that Xn → 0 (since we can take the sequence to be

Xn − X), then by assumption,

lim
n→∞

P[|Xn − X| > 1
2k ] = 0; ∀k ≥ 0

So for all k there is nk with P[|Xnk − X| > 1
2k ] ≤ 1

2k . Then by Borel-Cantelli we have

P

(
|Xnk | ≥

1
2k , I.O.

)
= 0.

Here is a characterization of random variables converges in probability:

Proposition 0.4.4. {Xn} be a sequence of random variables, they converges in probability if and only if every
subsequence has a further subsequence that converges a.e. to X.

Proof. (⇐) is obvious by above lemma.
(⇒): Suppose Xn does not converges X in probability, then there is a δ > 0 such that P (|Xn − X| ≥ δ)

does not converges to zero. then there is a ϵ > 0 and a subsequence {Xnk} such that P (|Xn − X| ≥ δ) >
ϵ for some ϵ, and clearly there is no subsequence converges to 0, hence no convergence a.e.

A direct consequence of (11) is we can pass convergence to probability to bounded continuous
functions:

Proposition 0.4.5. Let f be bounded continuous function and let Xn → X in prop, then f (Xn) → f (X) in
Lp.
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Proof. By (11) for all subsequence of Xn, there is a further subsequence converges to X a.e. Which
tells us for all subsequence of f (Xn), there is a further subsequence converges to f (X). Since f
bounded, we can apply Dominated Convergence theorem to see that every subsequence of the
sequence of real numbers, αn = E (| f (Xn)− f (X)|p), there is a convergence further subsequence.

Now suppose αn does not converge to zero, then there is a subsequence call βn that is uniformly
bounded away by some small number δ > 0 and clearly no subsequence of this number converges
to 0, hence a contradiction.

This theorem implies f (Xn) → f (X) in probability.
Given Xn → X in prob, we can create many random variables that converges in probability from

this by (5).

Proposition 0.4.6. Let Xn → X in probability, then for any bounded continuous function f , f (Xn) → f (X)
in probability as well.

Proof. Only thing we need to prove is that for all subsequence of f (Xn) there is a further subse-
quence that converges a.e. but this is obvious since f is continuous.

Definition 0.4.2. Converges in distributions: Let {Xn} be a sequence of random variables taking values in
a complete seperable metric space, then we define converges in distribution by

∫
f (x)µn(dx) for all f ∈ Cb.

Here we denote convergence in distribution by Xn ⇒ X or µn ⇒ µ.

Convergence in distribution is weaker than convergence in probability:

Proposition 0.4.7. E, ρ be complete seperable metric space and let {Xn} be a sequence of random variables
taking values in E such that Xn → X in probability, then Xn ⇒ X.

Proof. By (12) we see that f (Xn) → f (X) in Lp for p ≥ 1, so we have∫
f (Xn)dP →

∫
f (X)dP

for all bounded continuous function f .

Finally, we know in measure theory, fn → f , gn → f a.e. implies fngn → f g, fn + gn → f + g
a.e., here are similar properties of convergence in prob and distributions

Proposition 0.4.8. If Xn → X and Yn → Y in probability, then the following holds

XnYn → XY in probability
Xn + Yn → X + Y in probability

Proof. Note XnYn − XY = XnYn − XYn + XYn − XY = Yn (Xn − X) + X(Yn −Y). It reduces to show
the first assertion for Xn → X and Yn → 0, and the second assertion.

For second assertion

P (|Xn + Yn − X − Y| > ϵ) ≤ P(|Xn − X| ≥ ϵ

2
) + P(|Yn − Y| ≥ ϵ

2
) → 0.

Now for the frist case we note that for any subsequence nk of the natural number, there is a
further subsequence call αk = ψ(nk) such that Yαk → Y a.e. Since ψ(nk) itself is a subsequence of
the natrual number, there is a further subsequence call βk = ϕ(ψ(nk)) such that Xβk → 0 a.e. So
XβkYβk → 0 a.e. which is a further subsequence of nk.

The following similar property for convergence in distributions is a direct consequence of the
previous proposition

Proposition 0.4.9. If Xn → X and Yn ⇒ Y, then the following holds

XnYn ⇒ XY
Xn + Yn ⇒ X + Y
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0.5 Uniformly Integrability

Uniformly integrability provides conditions for reversing the implications:

Lpconvergence ⇒ convergence in probability ⇒ convergence in distributions (4)

Definition 0.5.1 (Uniformly integrability). Suppose {Xt}t∈T is a family of random variables where T is
an index set, we say the family is uniformly integrable if

lim
M→∞

sup
t∈T

E
(
|Xt|1|Xt|≥M

)
= 0.

The idea is from uniformly bounded in Lp, but ”a little” stronger, which is shown in the follow-
ing characterization of uniformly integrability:

Proposition 0.5.1. The family of random variable {Xt}t∈T is uniformly integrable if and only if the following
two conditions holds:

• supt∈T E|Xt|r < ∞ for some r ≥ 1.

• For all ϵ > 0 there is δ(ϵ) such that

P[E] ≤ δ(ϵ) ⇒ sup
t∈T

∫
E
|X|rdP ≤ ϵ.

Remark 0.5.1. The second condition can be understood as a continuity condition at zero on the set function
E → supt E[|Xt|r1E]

Proof. We show this for r = 1, the cases for r ≥ 1 is trivial due to Jessen’s Inequality.
Suppose uniformly integrability then∫

|Xt|dP ≤
∫

|Xt|1|Xt|≥MdP + M

and by definition, there is an M ≥ 1 such that the first term on the right hand side is bounded. The
second asssertion: let EM = {|Xt| ≥ M}

sup
t

∫
E
|Xt|dP = sup

t

(∫
E\EM

+
∫

E∩EM

)
|X|dP ≤ sup

t

∫
|X|1|X|≥MdP + MP[E]

Let M be so large that the first term on the right hand side less than ϵ
2 and let P[E] ≤ ϵ

2M .
Now for the converse, let the L1 norm of the family be bounded by A.

P (|Xt| ≥ M) ≤ E|Xt|
M

≤ A
M

By the second condition, for all ϵ > 0, there is M ≥ 1 such that P[|Xt| ≥ M] ≤ δ(ϵ) implies

sup
t

∫
|Xt|1|Xt|≥MdP ≤ ϵ.

Proposition 0.5.2. Let Xn → X in probability, then the followings are equivalent:
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1. {|Xt|r} is uniformly integrable.

2. Xt → X in Lr.

3. E[|Xt|r] → E|X|r < ∞.

Proof. (1) ⇒ (2) We note that

limE[|Xnk |
r] ≤ E[|X|r]

by Fatou’s lemma where Xnk is a subsequence that converges to X a.e. So |X|r is integrable. Note
we have the Inequality:

|Xn − X|r ≤ Cr (|Xn|r + |X|r)
so Yn = |Xn − X|r is also uniformly integrable.∫

|Xn − X|rdP ≤
∫
|Xn−X|≥λ

|Xn − X|rdP + λP[|Xn − X| ≥ λ]

Let n be so large such that P[|Xn − X| ≥ λ] ≤ δ(ϵ) where δ(ϵ) is given by (17), then above integrals
are bounded by ϵ + λδ(ϵ), let ϵ → 0 and δ(ϵ) = 0 we have desired result.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). Define

ψM(x) =

{
xr |x|r ≤ M
0 |x|r ≥ M

We observe that E[|Xn|r1|Xn|r≥M] = E[|Xn|r − ψM(|Xn|)] so for large n

E[|Xn|r1|Xn|r≥M] = E[|Xn|r − ψM(|Xn|)]
≤ E[|X|r]− E[ψM(X)] + ϵ

This is because ψM(Xn) converges to ψM(X) in Lr and the condition (3) given in the proposition.
Now let M be so large such that the difference between the first two terms be small, so this can be
made arbitrary small for large n, then use M to even larger if neccessary to ensure for small n’s, the
left hand side is also small.

We shall need the above result for Martingale Theories.
Finally, there is a useful formula to calculate the Lp norm of a random variable using the tail

probability:

Proposition 0.5.3. Let X be a random variable such that E[|X|p] < ∞ for some p, then we have the
following formula for E|X|p:

E[|X|p] =
∫ ∞

t=0
ptp−1P[|X| > t]dt

Proof. ∫ ∞

0
ptp−1P[|X| > t]dt =

∫ ∞

0
ptp−1

∫
Ω

1|X|(ω)≥tdP(ω)dt

=
∫

Ω

∫ ∞

0
ptp−11|X|(ω)≥tdtdP(ω)

=
∫

Ω

∫ |X|(ω)

0
ptp−1dtdP(ω)

=
∫

Ω
|X|p(ω)dP(ω) = E[|X|p]

where we use Fubini for change of order of integration.
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0.6 Levy’s Continuity Theorem/Some Fourier analysis

It is useful to talk about the Fourier transform of a measure. In harmonic analysis, Bochner’s
theorem (not proven here) tells us that a measure is uniquely determined by its fourier transform,
which gives a positive definite function. In this section I choose to use tools from harmonic analysis
(from ([MS13])) because it gives an eaiser (not so technical) proof for Levy’s continuity theorem.
Here are some definitions and results we need to know:

Definition 0.6.1. Let f ∈ Cc(Rd), we define the Fourier transform of f as

f̂ (ξ) =
∫

Rd
exp (−2πiξ · x) f (x)dx.

Remark 0.6.1. We would note that this definition naturally extends to all functions such that the above
integral makes sense, namely, L1(Rd) functions. It also extends naturally to the set of finite borel measures.

Definition 0.6.2. Let µ ∈ M(Rd) be a finite borel measure, then we define the Fourier transform of µ as

µ̂(ξ) =
∫

Rd
exp (−2πiξx) µ(dx).

We will make use of the Schwartz Class:

Definition 0.6.3. Define S , the Schwartz Class, to be a family of smooth (infinitely differentiable functions)
such that

∥xα∂β f (x)∥∞ < ∞, ∀α, β ∈ Zd

and the convergence in the Schwartz class is defined by

fn →S f ⇐⇒ lim
n→∞ ∑

α,β∈Zd

(
∥xα∂β ( fn − f )∥∞

)
∧ 1

2|α+β| → 0

We define S ′ to be the dual of S(continuous linear functionals), which is also called tempered
distributtions. Convergence in the space of tempered distributionns is ωt, ω ∈ S ′ then ωt → ω in
tempered distribution if ⟨ωt, f ⟩ → ⟨ω, f ⟩ for all f ∈ S . Note that all probability measures are in the
space of tempered distributions, and we shall see later in the proof of Levy’s theorem that converges
in tempered distribution is the same as converges in distribution for probability measures.

Here are some properties of Fourier transforms that we state without proof, and we will use
them in the future without reference:

Lemma 0.6.1. 1. let f , g ∈ S then f̂ ∗ g(ξ) = f̂ (ξ)ĝ(ξ).

2. ∂̂n
x f (ξ) = (2πiξ)n f̂ (ξ).

3. Inverse Fourier tranform: f (x) = C
∫

exp(−2πiξx) f̂ (ξ)dξ for some universal constant C. This
formula holds for a much wider class of functions, e.g. L1.

Now we identify an important property of Fourier transform

Proposition 0.6.1. Let f , g ∈ S , then we have the following identity:∫
f̂ g =

∫
f ĝ.
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Proof. ∫
f̂ g =

∫ ∫
exp(−2πiξx) f (ξ)dξg(x)dx

=
∫

f (ξ)
∫

exp(−2πiξx)g(x)dxdξ

=
∫

f ĝ.

Note that the identity in (20) holds whenever the change of order of integration makes sense.
So, actually, we can use this to define Fourier transform for tempered distributions:

Definition 0.6.4. Let µ ∈ S ′, we define the Fourier transform of µ, call µ̂ to be the element in S ′ such that

⟨µ̂, ϕ⟩ = ⟨µ, ϕ̂⟩, ∀ϕ ∈ S .

Remark 0.6.2. Since Fourier transform is an isometry from S to itself, so above definition for the Fourier
transform of distribution is meaningful and determines a element in S ′ uniquely and it is also an isometry
in S ′ (”bijection” that preserves ”distance”). Therefore, inverse of Fourier transform exists.

Remark 0.6.3. Note that we can embed the collection of Borel signed measures to the space of tempered
distribution, that is, M(Rd) ↪→ S ′. So the convergence of (tempered) distribution is ⟨µn, f ⟩ → ⟨µ, f ⟩ for
all f ∈ S which is dense in C0(R

d) under ∥·∥∞ by Stone Weierstrass Theorem, which requries the underlying
space to be locally compact Hausdorff. We will see below that convergence of tempered distribution is the same
as weak (distirbutional) convergence for probability measures. So from this point of view, the most natural
definition of weak convergence is convergence in the space of tempered distributions, at least for Rd. Fourier
transforms does not work well (to my knowledge) in infinite dimensional space, so if one needs similar result
in that case, this method would not work.

Definition 0.6.5. We say f : E → C is positive definite if for all finite set of {zn} ⊂ C then for all {en} ⊂ E
we have

∑
n,k

f (en − ek)znzk ≥ 0.

Finally, there is a representation theorem tells us there is one to one correspondence between
the family of probability measures and the family of positive definite functions. Here we state it
without proof, which can be found in ([CZ01]) for the real case, and ([MS13]) for the locally compact
abelian group case, and ([DPZ14]) for the infinite dimensional case, here we state the theorem in
([CZ01])

Proposition 0.6.2. f is a characteristic (fourier transform) of a probability measure if and only if f is positive
definite, f continuous at 0 and f (0) = 1.

Before we talk about the main result here, there is a good application of Fourier transform: the
independence relation of random variables can be determined through their characteristic function
(fourier transform):

Theorem 0.6.1 (Kac’). Let X, Y be an Rn valued random variable, then X ⊥ Y if and only only if

E[eiξ·X]E[eiη·Y] = E
[
ei(η,ξ)·(X,Y)

]
for all ξ, η ∈ Rn.
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Remark 0.6.4. Note that independence relation is really the relationship between measures instead of random
variables.

Proof. (⇒) direction is by definition.
(⇐): Let X̃, Ỹ be independent random variables whose distributions are idenitcal to X, Y rep-

sectively. Denote µ· as the measure induced by · = X, Y, then we have

µ̂(X,Y) = µ̂Xµ̂Y = µ̂X̃µ̂Ỹ = µ̂X̃,Ỹ

so by uniqueness of characteristic functions, we see that (X, Y) and (X̃, Ỹ) has the same distribu-
tions, so X, Y are independent.

Since we are talking about convergence, Levy’s continuity theorem characterizes weak conver-
gence of measure completely.

Proposition 0.6.3 (Levy). Let {µn} ⊂ M(Rn) be a sequence of probability measures, then µn converges
weakly if and only if its fourier transform µ̂n converges pointwise.

Proof. Note that the definition of Fourier transform of measures and Fourier transform of tempered
distributions are identical. Note also that C∞

c (Rd) ⊂ S and they are dense in C0(R
d) by Stone-

Weierstrass, so S is dense in C0(R
d).

First suppose weak convergence of measure, then the pointwise convergence is immediate by
definition of weak convergence.

Now suppose µ̂n → µ pointwise, then we have∫
Rd

ϕ(ξ)dµn(ξ) = ⟨µn, ϕ̂⟩ = ⟨µ̂n, ϕ⟩ =
∫

Rd
µ̂n(ξ)ϕ(ξ)dξ →

∫
Rd

µ̂(ξ)ϕ(ξ)dξ = ⟨µ, ϕ̂⟩ =
∫

Rd
ϕ̂(ξ)dµ(ξ)

where the convergence is given by dominated convergence theorem. By the fact that fourier trans-
form is a surjective map from S to itself, then we have ⟨µn, ϕ⟩ → ⟨µ, ϕ⟩ for all ϕ ∈ S . However,
µn, µ are also continuous linear functional of C0(R), so by density the convergence holds for all
C0(R

d) functions.
Here our last step is to show the convergence also holds for all bounded continuous function.

Let f : Rd → R be any bounded continuous function and let α > 0 such that µ(B0(α)) ≥ 1 − ϵ for
some small ϵ where B0(r) is the closed ball with radius r (regularity of borel measures). Finally let
h ∈ C∞

c (Rd) with h = 1 in B0(α) and h = 0 on B0(α + 1), this is possible by Lusin’s theorem. For
simplicity in typing, let Kϵ = B0(r) here. Now we consider the following:∣∣∣∣∫ f dµn −

∫
f dµ

∣∣∣∣ ≤ ∣∣∣∣∫ f dµn −
∫

f dµ −
∫

h f dµ +
∫

h f dµ +
∫

f hdµn −
∫

h f dµn

∣∣∣∣
≤
∣∣∣∣∫ f dµn −

∫
f hdµ

∣∣∣∣+ ∣∣∣∣∫ f hdµn −
∫

f hdµ

∣∣∣∣+ ∣∣∣∣∫ f hdµn −
∫

f dµ

∣∣∣∣
Now, when n → ∞, the middle term disapear by what we proved before. The first and third terms
are similar, so we only need to show that one of them can ger arbitrarily small. Here we consider
the first term, and note that

∫
f dµn =

∫
Kϵ∣∣∣∣∫ f dµn −

∫
f hdµ

∣∣∣∣ ≤ ∣∣∣∣∫ f dµn −
∫

f hdµn

∣∣∣∣+ ∣∣∣∣∫ f hdµn −
∫

f hdµ

∣∣∣∣
≤ ∥ f ∥∞

∣∣∣∣∫ 1 − hdµn

∣∣∣∣+ ∣∣∣∣∫ f hdµn −
∫

f hdµ

∣∣∣∣
= ∥ f ∥∞

∣∣∣∣1 − ∫
hdµn

∣∣∣∣+ ∣∣∣∣∫ f hdµn −
∫

f hdµ

∣∣∣∣
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and we note that limit sup of the first term is bounded by ∥ f ∥∞µ(Kc
ϵ) ≤ ∥ f ∥∞ϵ which can be made

arbitrarily small, and the limit of the second term is zero. So we conclude that |
∫

f dµn −
∫

f dµ|
can be made arbitrarily small, hence it is zero.

From the last step of the above proof, we also see that we can define convergence of probability
distribution under more relaxing condition

Lemma 0.6.2. The following are the ”same”

•
∫

f dµn →
∫

f dµ for f ∈ Cc(R).

•
∫

f dµn →
∫

f dµ for f ∈ Cb(R).

This is pretty cool since Cc ⊂ Cb is not dense in sup norm.
Since we are talking about convergence of measures, here is another equivalent way of defining

it

Definition 0.6.6. µn ⇒ µ if limn µn(E) = µ(E) for all E borel set with µ (∂E) = 0.

The equivalence of this and the above definiton are easily seen in Rn with step function approx-
imation and Urysohn’s lemma.

Definition 0.6.7 (Weakly Compact). Let {µn} be a family of probability measures on a complete seperable
metric space E, then we say {µn} is weakly compact if for every subsequence, there is a further subsequence
that converges weakly.

Remark 0.6.5. Here, the concept of weakly compactness arises naturally from functional analysis when we
treat borel probability measures as a subset of the dual of Cb(E), the space of bounded continuous functions on
E with ∥·∥∞ norm. For this reason, the above definition of weakly convergence, or convergence in distribution
is the most natural way to define this concept.

There is an easy characterization of weakly compactness of probability measures, which is the
tightness. We now define and prove the equivalence between those two concepts.

Definition 0.6.8. Let Λ be a family of probability measures on the complete seperable metric space E, we say
the family Λ is said to be tight if for all ϵ > 0, there is a compact Kϵ such that

µλ(Kϵ) ≥ 1 − ϵ ∀µλ ∈ Λ.

Remark 0.6.6. Here, inner regularity of borel measures are assumed.

Proposition 0.6.4. Let Λ be a family of probability measures, then Λ is weakly compact if and only if Λ is
tight.

Proof. We first prove the case for which E itself is already compact, then extend it to the general
case with diagonalizatio argument.

Suppose first that E is compact, then any family on E is automatically tight. We recall that
C(E) is also seperable (separability ⇐⇒ metrizable), so take {µn} be any sequence contained in
Λ and let { f } ⊂ C(E) be a dense subset. Here we use diagonalization to create a weakly con-
vergent subsequence. We note that

{∫
E fnµk

}
k∈N

is a sequence of bounded real numbers for each
n ∈ N, therefore, it contains a convergent subsequence. For n = 1, call the corresponding subse-
quence of measures

{
µ
(1)
k

}
k∈N

. Now we construct subsequence inductively: suppose
{

µ
(n)
k

}
k∈N

is

a subsequence of {µk} such that∫
E

f jdµ
(n)
k → αj for some αj ∈ R for all j ≤ n.
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For the sequence
{∫

E fn+1dµ
(n)
k

}
⊂ R, there is a subsequence that converges to some number αn+1,

then call the corresponding subsequence of probability measures
{

µ
(n+1)
k

}
k∈N

⊂
{

µ
(n)
k

}
k∈N

. Let

νn ≜ µ
(n)
n , then

lim
n→∞

fkdνn = lim
n→∞

fkdµ
(k)
n = αk.

Now observe that fk → limn→∞
∫

E fkdνn defines a continuous linear functional on { fn} which is
dense in C(E). Then we can extend it to C(E) and by Rietz representation theorem on compact
Hausdorff space, this map is the integration with respect to some probability measure.

Now for the general case: First assume it is tight, let Km ⊂ E be compact set such that µn(Em) ≥
1− 1

m for all n and for all m. Now we restrict µn to Km and call the restriction
{

µ
(m)
n

}
. Again, choose

{ fk} ⊂ C(E) to be a sequence that is dense. Now, let Em =
⋃m

k=1 Km, which is again compact. So by
above argument, there is a subsequence, call ν

(m)
n such that

lim
n→∞

∫
Em

fkdν
(m)
n =

∫
Em

fkdν(m)

for some probability measure on E, note that ν(n) and ν(k) agrees on Ek assuming n ≥ k. We define
the measure

µ(A) = lim
n→∞

ν(n) (A ∩ En)

The converse: assume by contradiction that {µn} is not tight but there is a subsequence that con-
verges weakly. That is, there is a number α ∈ (0, 1) such that

µn(K) < 1 − α, ∀K compact.

Now choose A be compact, continuity set such that µ(A) > 1 − a
2 would get a contradiction.

Those are all the general convergence result for almost surely, in probability and in distribution I
have. The following two sections are special results like Law of large number, central limit theorem
and Kolmogorov’s condition for convergence of series of random variables.

0.7 Law of Large Numbers

The idea of law of large numbers is that when we have a sequence of similar random variables, say
{Xn} that have the same expectation (E[Xn] = µ for all n), then the average of partial sum would
converge to their mean in some sense (prop or a.e.), formally, if we let Sn = ∑n

i=1 Xi, then we expect

Sn − µ

n
→ 0 , as n → ∞ in some sense. (5)

There are many versions of this law, roughly speaking, the ones that have convergence a.e. are
called strong law, and the ones that have convergence in probability is called weak law. Since we
(I) spent a lot of time on Fourier transforms above, let’s first do one version with a simple proof via
Fourier transform. But first we need the following lemma:

Lemma 0.7.1. Suppose {Xn} converges to a ∈ R in distribution, then Xn → a in probability.
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Proof. Let µn be the induced measure on R of Xn, and let Br(a) be the unit ball (interval) centered
at a with radius r. For fixed r let fr be a continuous function defined as follows:

fr(x) =

{
1 x ∈ B ϵ

2
(a)

0 x /∈ Bϵ(a)

Such function exists by Urysohn’s lemma.

P (|Xn − a| < ϵ) =
∫

Ω
1Bϵ(a)(X(ω))dP(ω) =

∫
R

1Bϵ(a)(x)dµn(x) ≥
∫

R
fϵ(x)dµn(x) → 1.

Before we dive into the weak law of large number, we need certain differentiation result for
Fourier transform of probability measure.

Lemma 0.7.2. Let µ be a probability measure with mean µ, that is,
∫

x xdµ(x) = µ. Then the fourier
transform of µ, call µ̂ is differentiable and dµ̂

dξ (0) = 2πiµ.

Proof.

µ̂(ξ + h)− µ̂(ξ)

h
=

1
h

(∫
R

exp(−2πi(ξ + h)x)− exp(−2πiξx)dµ

)
=
∫

R
exp (−2πiξx)

exp (−2πihx)− 1
h

dµ(x)

Taylor expansion of the exponential function tells us exp(−2πihx) = 1 + 2πixh + o(h), where o(h)
term means limh→0

o(h)
h = 0. So by dominated convergence theorem we see that when we take the

limit, the above integral is equal to

−2πi
∫

R
exp(−2πiξx)xdµ(x)

which is integrable, and at ξ = 0, the derivative is −2πiµ.

The following proposition is one of the weak law of large number that is easy to prove now.

Proposition 0.7.1. Let {Xi} be a sequence of i.i.d. random variable such that Xi ∈ L1(P) and E[Xi] = µ
for all i. Then if we let Sn = ∑n

i=1 Xi, then

Sn − nµ

n
→p 0. or

Sn

n
→p µ

Proof. We show that the Fourier transform of the left hand side limit converges to the fourier
transform of delta function at zero. In that case we have convergence in distribution to a constant
in R, hence convergence in probability. Here we assume WLOG that µ = 0.

Fourier transform of a point mass at zero: δ0.∫
R

exp(−2πiξx)dδ0(x) = 1
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Now consider the Fourier transform of the average of the partial sums:

E

(
exp

(
−2πi

ξ

n

(
n

∑
j=1

Xn

)))
=

n

∏
j=1

E

[
exp

(
−2πi

ξ

n
Xj

)]
=

{
E

[
exp

(
−2πi

ξ

n
Xj

)]}n

=

(
1 − 2πiµξ

n
+ o(

ξ

n
)

)n

→ exp(−2πiµξ)

Since µ = 0, we have pointwise convergence, hence convergence in distribution by Levy’s theorem.
Then by (5) we have convergence in probability.

Note that if the assumption is that E[|Xn|p] < ∞, then by Jessen we see that E[|Xn|] < ∞.
There is another weak law of large numbers that does not require total independence of the

random variables, but rather pairwise independence. To prove such thing, we need the notion of
equivalence of two sequences of random variables:

Definition 0.7.1. Let {Xn} and {Yn} be two sequence of random variables, then we say they are equivalent
if

∑
n∈N

P[Xn ̸= Yn] < ∞.

In other words, P (Xn ̸= Yn, I.O) = 0, or P
(⋃

m≥1
⋂

n≥m Xn = Yn
)
= 1 by Borel Cantelli.

The word equivalence should give us a hint that the behavior of the partial sums of the two
sequence are basically the same:

Theorem 0.7.1. let {Xn} and {Yn} be two equivalent sequence, then

∞

∑
n=1

(Xn − Yn) < ∞ a.e.

and if αn ↑ ∞, then

1
αn

∞

∑
n=1

(Xn − Yn) = 0 a.e.

Proof. Note that the second convergence result is a trivial consequence of the first one.
By Borel-Cantelli, we see that there is Ω̃ ⊂ Ω such that P[Ω̃] = 1 and for all ω ∈ Ω̃, there is

n0 ≥ 1 such that

Xn(ω) = Yn(ω) ∀n ≥ n0.

More explicitely, for all ω ∈ Ω̃, the sum ∑∞
n=1(Xn(ω) − Yn(ω)) only has finitely many nonzero

terms, hence convergence a.e.

Now we are ready to prove the weak law of large number under a more relaxing condition:
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Proposition 0.7.2. Let {Xn} be a sequence of random variable that is identically distributed and pairwise
independent, and assume that E[Xn] = α < ∞. Let Sn denote its nth partial sums, then

Sn

n
→p α

Proof. Since we talked about equivalence sequence, it gives a hint that the convergence is proven by
constructing an equivalent sequence that is easier to work with. We shall use truncation method to
construct such a sequence: define {Yn}, a sequence of random variables as follows:

Yn =

{
Xn on the set |Xn| ≤ n
0 elsewhere.

Now it is easy to see that {Xn} and {Yn} are equivalent because

E[|X1|] < ∞ ⇔ ∑
n=1

P[|X1| > n] < ∞ (Prop (19))

(identically distributed) ⇔
∞

∑
n=1

P[|Xn| > n] =
∞

∑
n=1

P[Xn ̸= Yn] < ∞.

So now we only need to show convergence for Yn, we use Chebyshev Inequality for that. Denote
the partial sums of Yn by S′

n and assume WLOG that α = 0. Note that since each of Yn is a bounded,
then it is square integrable. To do that, we first consider the variance of S′

n. Denote µ the measure
on Rn generated by X1 (Xn’s are identically distributed!), then

var(S′
n) =

n

∑
j=1

var(Yj) =
n

∑
j=1

∫
|x|≤j

x2dµ ≤
n

∑
j=1

j
∫
|x|≤n

|x|dµ ≤ n(n − 1)
2

E[|X1|].

Clearly this is not the bound we want, but it does give us an hint on what to do. To improve the
bound, we use log(n) to divide the sum, and note that limn→∞

log(n)
n = 0.

n

∑
j=1

∫
|x|≤j

x2dµ = ∑
1≤j≤log(n)

∫
|x|≤j

x2dµ + ∑
log(n)<j≤n

∫
|x|≤j

x2dµ

≤ ∑
1≤j≤log n

log(n)E|X1|+ ∑
log n<j≤n

(
log n

∫
|x|≤log n

|x|dµ + j
∫

log n<|x|≤j
|x|dµ

)
≤ n log nE|X1|+ n2

∫
|x|>log n

|x|dµ

With this bound, we see that

var(S′
n)

n2ϵ2 =
1
ϵ2

(
log n

n
E[|X1|] +

∫
|x|>log n

|x|dµ

)
→ 0.

So we have

P
(
|S′

n − E[S′
n]|/n > ϵ

)
≤ var(S′

n)

(nϵ)2 → 0 ∀ϵ > 0.

So
S′

n
n

− E[S′
n]

n
→ 0, in probability.

However, since E[Yn] → E[X1] = 0 by DCT, the second term on the left hand side tends to zero,
since it is an average of things that tends to zero. The convergence result for Sn is given by the
second part of Theorem 7.
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0.8 Convergence of Random Series

The next goal is to prove the Strong Law of Large Numbers. As far as I know, there are at least two
ways of doing this, both of which are contained in ([Dur19]). Here I will take the longer route of
proving it using Kolmogorov’s three series theorem due to its imporance.

Let’s first talk about the Kolmogorov’s Maximal Inequality (to distinguish this from Hardy-
Littlewood maximal Inequality).

Proposition 0.8.1. Let {Xn} be a sequence of independent random variable with mean zero and variance
σn = E[|Xn|2] < ∞ for all n ∈ N. Then we have the following Inequality for maximum of its partial sum
Sn = ∑n

k=1 Xk:

P

[
max

1≤k≤n
|Sk| ≥ ϵ

]
≤ E|Sn|2

ϵ2 =
var(Sn)

ϵ2 . (6)

Proof. Remove max, then it is just Chebyshev’s Inequality. Treating S· : N → R as a process, then
we can divide the case into at which step |Sk| first greater than ϵ. Here is what I mean:

Let A1 = {|X1| ≥ ϵ}, and

Ak+1 =

 ⋃
1≤j≤n

Aj

c

∩ {|Sn+1| ≥ ϵ}.

Note that Ai ∩ Aj = ∅ and Aj is the event that the first time the process |S·| corsses ϵ is at jth

step. Now consider the right hand side of the Inequality in the statement: Let µ be the underlying
probability measure,∫

|Sn|2dµ =
n

∑
k=1

∫
Ak

|Sn|2dµ

=
n

∑
k=1

∫
Ak

((Sn − Sk) + Sk)
2 dµ

=
n

∑
k=1

∫
Ak

(Sn − Sk)
2 + 2Sk(Sn − Sk) + S2

kdµ

=
n

∑
k=1

(∫
Ak

(Sn − Sk)
2dµ +

∫
Ak

2Sk(Sn − Sk)dµ +
∫

Ak

S2
kdµ

)
We note 1Ak Sk ∈ σ(X1, ..., Xk) and Sn − Sk ∈ σ(Xk+1, ..., Sn), so they are independent, so the middle
term in the above sum disapears. Now if we ignore the first term, then we have the following
Inequality ∫

|Sn|dµ ≥
n

∑
k=1

S2
kdµ ≥ ∑

1≤k≤n
ϵP[Ak] = ϵ2P

[ ⋃
1≤k≤n

Ak

]
= ϵ2P[ max

1≤k≤n
|Sk|2 ≥ ϵ].

We note that the Maximal inequality in seperable Banach space holds if in addition Xn’s are
symmetric, means Xn =d −Xn (equal in distirbution). The proof is a bit different since we don’t
have ”compete the square” in general Banach space, it can be found in ([DPZ14]).

In ([CZ01]), according to Chung, the next is step is to have a different bound for (6), and Durret
([Dur19]) uses the Central Limit Theorem to prove the Kolmogorov three series theorem. Time is
limited for me, I’ll have to use the easier method of CLT from the ”future” to avoid technical details,
I might come back and edit it later though.
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Proposition 0.8.2. Let {Xn} be a sequence of independent random variables such that E[Xn] = µn and
var(Xn) = σ2

n. Suppose ∑n∈N µn and ∑n∈N σ2
n both converges, then the series converges almost surely, that

is,

lim
N→∞

SN =
N

∑
n=1

Xn converges a.s. (7)

Proof. We will show that the sequence of sum Sn are Cauchy using the maximal Inequality given in
proposition (6). Let’s say n ≥ m, and assume WLOG that µn = 0 for all n,

P

(
sup

n≤k≤m
|Sn − Sk| ≥ ϵ

)
= P

(
sup

n≤k≤m

∣∣∣∣∣ k

∑
i=n

Xi

∣∣∣∣∣ ≥ ϵ

)

≤ 1
ϵ2

m

∑
k=n

σ2
n.

Note that this goes to zero as n, m → ∞, note further that this shows that the partial sums forms a
cauchy sequence in sup norm, hence converges a.e..

Now we are ready to prove the three series theorem:

Proposition 0.8.3. Let {Xn} be a sequence independent random variables, its partial sum, Sn = ∑n
k=1 Xk

converges a.e. if some A > 0 such that the truncated sequence {Yn} where Yn = Xn1|Xn|<A we have that

(1)
∞

∑
n=1

E[Yn] converges; (2) ∑
n∈N

P (|Xn| ≥ A) converges and (3) ∑
n=∈N

var(Yn) converges.

Sn converges only if the three converges is true for all A > 0.

Proof. Sufficient: It is easy to see that if the three series condition holds for some A > 0, then Xn
and Yn are equivalent sequence, so they either both converges or both diverges. By the two series
theorem (prop 0.8), the the partial sums of Yn converges, so Sn converges.

Necessity: First suppose ∑n∈N P[|Xn| > A] diverges for arbitrary large A, then by the second
Borel-Cantelli, we have that for all n ≥ 1 there is a m ≥ n such that Xn > A, hence the series would
diverge.

Now if Sn converges, then (2) holds, then Kolmogorov’s two series theorem tells us ∑∞
k=1 Yn −

E[Yn] converges, but since Yn is truncated version of Xn, so ∑n∈N Yn converges, hence ∑∞
n=1 E[Yn]

converges.
Finally, given Sn converges, then Yn converges a.e. and bounded pointwise (in n), so we can use

central limit theorem

1√
var(∑N

n=1 Yn)

N

∑
n=1

(Yn − E[Yn]) →d N (0, 1).

and without finiteness of the sum of variance of Yn, this is not possible.

Here is a useful result for convergence of random series:

Proposition 0.8.4. Let {xi} be independent sequence of random variables, let SN = ∑N
n=1 Xn. Then SN

converges almost surely if and only if it converges in distributions.
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Remark 0.8.1. This proposition shows us that the three concepts of convergence are the same thing when we
talk about sum of independence random variables.

Proof. Now note that sequence of random variables converges if and only if they are cauchy in
probability. One direction here is obvious, so we assume convergence in distribution to some
probability measure ν, and assume by contradiction SN does not converge a.e., that is, SN is not
cauchy in probability. So by Levy’s continuity theorem and definition of cauchy in probability, we
have

µ̂n(ξ) → ν̂(ξ) pointwie; (8)

where µn denotes the measure induced by Sn. Also, there exists (N(n), M(n)) increasing pair of
natural numbers such there are δ, ϵ > 0 with

P
(∣∣∣SN(n) − SM(n)

∣∣∣ > ϵ
)
> δ. (9)

We note that µn = µk ∗ µk,n for k < m < n, where µi,j is the measure induced by ∑
j
k=i+1 Xn.

This is because σ(Sn) ⊥ σ(∑m
k=n+1 Xk). ∗ denotes convolution of measures defined as µ ∗ ν(Γ) =∫

Ω µ(Γ − ω)dν(ω) whenever the space Ω have nice linear structure (eg. seperable Banach space).
Now, by properties of Fourier transforms, ̂µk ∗ µk,n = µ̂kµ̂k,n, hence the convergence in distribu-

tion implies µ̂N(n),M(n) → 1 ⇐⇒ µ →d δ0 by a simple application of Levy’s continuity theorem.
However, (8) tells us that µN(n),M(n)(|x| > ϵ) > δ so a contradiction.

Remark 0.8.2. Here we see that we do not use any property that is unique to R, so the same proof works for
Rn or any space where the continuity theorem holds.

0.9 The Strong Law of Large Numbers

To prove the strong law of large numebrs, we’ll need the a very believable theorem from analysis
which we state without proof:

Theorem 0.9.1 (Kronecker’s Lemma). Suppose ∑∞
n=1

xn
an

converges for real numbers xn, an for an ↑ ∞,
then

1
an

n

∑
k=1

xn → 0. (10)

Theorem 0.9.2 (The Strong Law of Large Numbers). Let {Xn} be i.i.d with mean µ, then

lim
n→∞

Sn − nµ

n
→ 0 a.e. (11)

Where Sn = ∑n
i=1 Xi is the partial sum.

Proof. Assume WLOG that µ = 0, let Yn = Xn1|Xn|≤n, the truncated version of Xn, then by equiva-
lence relation, we only need to show

∑N
n=1 Yn

N
→ 0 as N → ∞.
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Now by Kronecker’s lemma (theorem 8), we only need to show

N

∑
n=1

Yn

n
converges.

However, note that {Yn
n } forms a sequence of independent random variables, so by Proposition (29),

we only need to show it converges in measure or probability or in L2, so consider:

E

( N

∑
n=1

Yn

n

)2
 =

N

∑
n=1

E
[
Y2

n
]

n2

and we only have to bound the second moment of Yn by some constant.

∑
n∈N

E[Y2
n ]

n2 = ∑
n∈N

1
n2

∫ ∞

0
2tP[|Yn| ≥ t]dt

=
∫ ∞

0
∑

n∈N

1
n2 1t≤n2tP[|Xn| ≥ t]dt

=
∫ ∞

0
2

(
∑
t≤n

t
n2

)
P [|X1| ≥ t] dt

To show this thing is finite, our task becomes show the sum in the integral is finite. However,
observe that this sum is comparable to the following integral

2t
∫ ∞

t

1
x2 dx ≤ 10.

Now by the fact that Xn’s are integrable, we have the desired result.

0.10 Central Limit Theorem

There are many versions of CLT, I only have the energy to write about couple of them, perhaps I’ll
add more later.

Remark 0.10.1. To match with other texts in probability (avoid proofs), we redefine fourier transform of a
measure to be µ̂(ξ) =

∫
e−itξdµ(t) and use the term ”fourier transform of” and ”characteristic function of”

interchanagably.

First let’s review what is a normal distribution:

Definition 0.10.1. We say X ∼ N (m, σ2) on the real line if X has density function

fX(x) =
1√

2πσ2
exp(− (x − m)2

σ2 )

For Rn, the definition is similar: We say X ∼ N (m, Σ), where Σ is a positive definite matrix, if the
measure induced by X, call it µ, is absolutely continuous with respect to λn, the n-dim lebesgues measure
and

dµ

dλn (x) =
1

(2π det(Σ))
exp

(
−1

2
⟨x − m, Σ−1(x − m)⟩

)
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I will focus on the one dimensional case. I will refer the measure induced by an normal random
variable by gaussian measure.

Proposition 0.10.1. Let µ be a Guassian measure with mean m and variance σ2, then its Fourier transform
is

µ̂(ξ) = exp
(
−imξ − 1

2
(σξ)2

)
.

Here is one that only requries a simple application of Levy’s Continuity theorem, and the proof
is basically the same as Proposition 24:

Proposition 0.10.2 (CLT 1). Let {Xn} be i.i.d with finite mean m and finite variance σ2, then we have the
following weak convergence in distribution:

lim
n→∞

∑n
k=1 Xn − nm√

nσ
→d N (0, 1) (12)

where N (0, 1) denote the standard normal distribution.

Proof. Here we assume WLOG that m = 0, let φn(ξ) = µ̂n(ξ), then we only need to show φn →
exp

(
−1

2 ξ2
)

pointwise.

φn(ξ) = E

[
exp

(
−i

1√
nσ

n

∑
k=1

Xn

)]

=
n

∏
k=1

E

(
exp

(
−i

Xn√
nσ

))

=

(
φ1

(
ξ√
nσ

))n
=

(
1 − 1

nσ2 σ2ξ2 + o

((
ξ√
nσ

)2
))n

→ exp
(
−1

2
ξ2
)

For triangular arrays that looks like

X1,1, X1,2, ..., X1,k1 ;
X2,1, X2,2, ..., X2,k2 ;
... (13)
Xn,1, Xn,2, ..., Xn,kn ;
...

where we assume {Xn,j}kn
j=1 is a collection of independent random variables, but the random vari-

ables in different rows might be dependent. Let E[Xn,j] = αnj < ∞ and var
(
Xnj
)
= σ2

nj < ∞. We

assume that αnj = 0 and ∑kn
j=1 σ2

n,j = 1 for simplicity (rescaling makes this doable). We call the sum

of the random variable in thenth row Sn, that is,

Sn =
kn

∑
j=1

Xn,j.

To state the Lindeberg-Feller’s Central Limit Theorem in its full, we will need the following defini-
tion:
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Definition 0.10.2. We say a triangular array like (13) is holospoudic if

lim
n→∞

max
1≤k≤kn

P [|Xk| > ϵ] = 0, ∀ϵ.

Finally, let µn,j be the measure induced by the random variable Xnj. Here is the theorem:

Theorem 0.10.1. Under the above set up we have

lim
n→∞

kn

∑
k=1

∫
|Xnj|>η

|x|2dµnj → 0∀η > 0

(this is called the Lindeberg condition) if and only if the following two conditions holds:

1. Sn → N (0, 1) in distribution.

2. The triangular array is holospoudic.

Remark 0.10.2. The full proof can be found in ([CZ01]) which he proved both sufficiency and necessity, but
I will only prove sufficiency here. Chung used a method that can be applied to more general CLT. A proof
similar to our proof can be found in ([Bil08]).

We’d need the following two calculus theorems for the proof, which we state without proof for
now, but I might come back latter to add the proof:

Theorem 0.10.2. Let {θn,k, 1 ≤ n, 1 ≤ j ≤ kn} be a triangular array of complex numbers, and suppose the
following holds

1. max1≤k≤kn |θn,k| → 0 as n → ∞.

2. ∑kn
k=1 |θnk| < M for all n.

3. ∑kn
k=1 θnk → θ for some θ ∈ C.

Then we have

kn

∏
k=1

(1 − θn,k) → eθ.

Theorem 0.10.3. Let u : N × N → R be a function of the positive integers such that

lim
n→∞

u(m, n) → 0 ∀m ∈ N,

then there is a subsequence of the positive the integers, mn such that

lim
n→∞

u(mn, n) → 0.

The essential idea of the proof is treat the sum of each raw as a random variable and show it
converges in distribution.
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Proof. Here is the structure of the proof: we will first use Theorem (12) to create an equivalent
sequence of random variables to Sn such that we can apply Theorem(11) to its Fourier transform to
show this sequence of random variables converges in distribution to the standarn normal distribu-
tion, hence Sn would too.

Note that for all η ∈ N we have

m2
nk

∑
k=1

∫
|x|≥m

|x|2dµn,k → 0.

So by theorem (12), there is a sequence of numbers that decrease to zero, call ηn such that

lim
n→∞

1
η2

n

kn

∑
k=1

∫
|x|≥ηn

|x|2dµn,k = 0. (14)

Now we let Yn,k = Xn,k1|Xn,k|≥ηn , the truncated version of Xn,k at the point ηn for each row, and

denote S′
n = ∑kn

k=1 Yn,k, I will show at the end of the proof that S′
n and Sn are equivalent. We first

show |E[S′
n]| goes to zero and show that var(S′

n) = E[S2
n]− E[S′

n] → 1. First we observe that

E[Yn,k] =
∫

R
xdµn,k −

∫
|x|≥ηn

xdµn,k = −
∫
|x|≥ηn

xdµn,k

∣∣E[S′
n]
∣∣ = nk

∑
k=1

∫
|x|≥ηn

|x|dµn,k ≤
nk

∑
k=1

1
ηn

∫
|x|≥ηn

|x|2dµn,k → 0. (15)

Also for variance:

var(S′
n) = E

(
nk

∑
k=1

(Yn,k − E[Yn,k])

)2

=
nk

∑
k=1

E[Y2
n,k]− E[Yn,k]

2

However,

nk

∑
k=1

(E[Yn,k])
2 ≤

nk

∑
k=1

∫
|x|≥ηn

|x|2dµn,k

∫
|x|≥ηn

1dµn,k → 0.

However, we note that the Lindeberg condition given is the same as

lim
n→∞

nk

∑
k=1

∫
|x|<ηn

|x|2dµn,k = lim
n→∞

nk

∑
k=1

E[Y2
n,k] = 1. (16)

Now, let’s consider the Fourier transform of S′
n:

E [exp (−iξS;n )] =
nk

∏
k=1

E [exp (−iξYn,k)]

=
nk

∏
k=1

(
1 − iξE[Yn,k]−

1
2

(
ξ2E[Y2

n,k]
)
+ o(ξ2E[Y2

n,k])

)
We would notice that we gathered most of the conditions in theorem (11): (15) combined with (16)
would get us condition (2) and (3), and (14) would get us condition (1), and since E[|Y2

n,k] → 0
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uniformly in k as n → ∞, we do not have to worry about the small o term. Then by theorem (11)
we have convergence in distribution.

Finally, we show that S′
n and Sn are equivalent sequence of random variables:

P
[
Sn ̸= S′

n
]
= P

 ⋃
1≤k≤nk

|Xn,k| ≥ ηn

 ≤ ∑
1≤k≤nk

P [|Xn,k| ≥ ηn] ≤
1
ηn

∫
|x|≥ηn

|x|2dµn,k

which goes to zero by (14).
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Chapter 1

Discrete Martinagles

This section is focused on Discrete Martingale theory and some Markov Theory. Too many theories
in the topics of modern probability relies on those two. The structure is like the combination of
([CZ01]) and ([Dur19]). It will be break down into the following: conditional expectation, Markov
properties and Discrete Martingales.

1.1 Conditional Probability

Here is an intuitive route to get to the definition of conditional expectation:

Definition 1.1.1. Let Ω,F , P be a probability measure space, and let Λ ⊂ F , then we define the conditional
probability with respect to Λ, call PΛ(·) or P(·|Λ) to be

PΛ(A) =
P(A ∩ Λ)

P(A)
, ∀A ∈ F .

We define the conditional expectation with respect to Λ, call EΛ[·] to be

EΛ[X] =
∫

Λ
XdP, for all random variable X that makes sense.

Now we let {Λn} be a countable partition of Ω (e.g. generated by discrete random variables),
and call G ⊂ F the σ-field generated by {Λn}. Then for any random variable X ∈ F we define a
new function EG(X) by

EG(X)(·) = ∑
n∈N

1ΛnEΛn(X).

So this EG(X)(·) takes countable values as well, and note that it is only G-measurable. Furthermore,
for any A ∈ G, we see that ∫

A
EG [X]dP =

∫
A

XdP.

For general G (not neccessarily countably generated), we here show uniqueness and existance of
conditional expectation.

Proposition 1.1.1. Let X be a L1 r.v. defined on the probability space (Ω,F , P), for any σ-sub-field G of F ,
there is a unique random variable that is G measurable, call it E[X|G], such that∫

A
E[X|G]dP =

∫
A

XdP ∀A ∈ G.

33
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Proof. Uniqueness first: suppose φ1 and φ2 both satisfies the above property, then∫
A

φ1dP =
∫

A
φ2dP ∀A ∈ G.

Note that {φ1 > φ2} and {φ1 < φ2} are both in G, so∫
φ1−φ2>0

φ1 − φ2dP = 0

so this must have measure zero, same for the other set, so we must have φ1 = φ2 a.e., and since we
do not distinguish functions that disagree on set of measure zero, so this is unique.

Now for existance, define ν(·) : G → R to be

ν(A) =
∫

A
XdP.

Then by properties of integral, this is a signed measure. Also, if P(A) = 0, then ν(A) = 0 as well,
so ν << P. So by Radon-Nikodym, there is a function, call E[X|G] = dν

dP
.

In conclusion, conditional expectation is just the Radon-Nikodym derivative of the signed mea-
sure generated by integrating X on some sub σ field with respect to the given probability measure.
Here we repeat what we talked about

Definition 1.1.2. Let X be a random variable defined on (Ω,F , P), given a sub σ field, we define E [X|G]
to be the random variable such that

1. is G measurable.

2. have the same integral as X on G.

Remark 1.1.1. In the example given before the definition we see that in countable case we can represente the
conditional expectation explicitely, but we don’t always have such representation (see [CZ01]).

Here are some basic properties of conditional expectation, they are comparable to usual expec-
tations (every equality below means a.s. equal):

Theorem 1.1.1. Let X, Y, Z be integrable random variables on the probability space {Ω,F , P} and let
G ⊂ F be a σ subfield, then the following is true:

1. If X ∈ G, then E[X|G] = X.

2. If Z ∈ G (σ(Z) ∈ G), then E[ZX|G] = ZE[X|G] for ZX integrable.

3. If X ≤ Y, then E[X|G] ≤ E[Y|G].

4. |E[X|G]| ≤ E[|X||G].

5. Xn ↑ X ⇒ E[Xn|G] ↑ E[X|G].

6. Xn ↓ X ⇒ E[Xn|G] ↑ E[X|G].

7. |Xn| ≤ Y where Y integrable, and if Xn → X, then E[Xn|G] → E[X|G].

8. Let φ be a convex function, then φ (E[X|G]) ≤ E[φ(X)|G] whenever φ(X) is integrable.
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9. Suppose X, Y are square integrable, then E[|XY||G] ≤
(
E[|X|2|G]

) 1
2
(
E[|Y|2]|G

) 1
2 .

10. If H ⊂ G, then E [E [X|G] |H] = E [E [X|H] |G] = E[X|H].

11. If F1 ⊂ F2, then E[X|F1] = E[X|F2] if and only if E[X|F2] ∈ F1.

Here I prove some of them, most of them should be trivial implications of the ordinary cases.

Proof. (2) Here we need to show

∀Λ ∈ G,
∫

Λ
ZE[X|G]dP =

∫
Λ

ZXdP.

We note that if Z = 1A for some A ∈ G, then it is automatically true, hence true for any step
functions. We also recall a fact from real analysis that we can approximate any function by a
sequence of step function, either bounded by the function itself, or increasing to the function. Then
use either monotone or DCT will show the limit equals. (We actually have that for all complete
metric space, one can construct a sequence of function that increasing to the targeting function).

(9) The proof is also comparable to the proof in ordinary integration case: Let α =
(
E[|X|2|G]

) 1
2

and β =
(
E[|Y|2]|G

) 1
2 . Note

|XY|
αβ

≤ |X|2
α

+
|Y|2

β
.

Take the condition expectation with respect to G on the both sides, we see

E

[
|XY|
αβ

]
≤
[
|X|2
2α

]
+

[
|Y|2
2β

]
⇒E[|XY|]

αβ
≤ 1

2α
E[|X|2|G] + 1

2β
E[|Y|2|G] ≤ 1

then the desired result is obtained by multiplying two sides by αβ and recall what they are.
(8) Let φ be a convex function and let {Xn}n∈N be a sequence of increasing step functions that

converges to X. Finally, let φn be defined as follows:

φn(x) =

{
φ(x) |x| ≤ n
ψ(x) |x| > n

where |ψ(x)| ≤ an|x|+ bn that is tangential to φ. We see that (8) is true for φn and Xm, that is,

φn (E[Xm|F ]) ≤ E[φn(Xm)|F ]

taking m → ∞ has no convergence problem since φn continuous and at most linear growth out
side of [−n, n] and the integrability of X and φ(X) are assumed. Note also φn ↑ φ, so monotone
convergence allows us to take the limit with no problemm as well.

Remark 1.1.2. It is worth noting that if f is a measurable function and X ∈ G, then f (X) ∈ G as well. So
1

E[X|G] , (E[X|G])2 ∈ G.

Here we define Markov property and Markov process, but it will not be used until much later.
For details on this, see ([RKS+96]), ([Law18]) and sections in ([Dur19]) and ([CZ01]).
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Definition 1.1.3. Let {Xn}n∈N be a sequence of random variables, we say that it has Marov property or it
is a Markov process if

P[Xn+1 ∈ A|X1, ..., Xn] = P[Xn+1|Xn] (1.1)

where P[X|Y] is interpreted as conditional expectation of the indiactor function 1A with respect to σ(Y).

Remark 1.1.3. {Xn} in the above definition an be treated as a discrete random process (i.e. nth step denotes
as Xn). So for the rest of this notes, I will refer to such thing as processes.

Remark 1.1.4. Also note in above definition, Xn ∈ σ(Xn) ⊂ σ(X1, ...., Xn). So we can make a sequence of
σ-field, say Fn, that is increasing (Fn ⊂ Fn+1) such that Xn ∈ Fn (but not neccessarily in Fn−1).

Definition 1.1.4. If {Xn} is a process defined on some probability measure space (Ω,F , P), and Fn be a
sequence of increasing σ-field such that Fn ⊂ Fn+1 and Fn ⊂ F for all n ∈ N. Then we say Xn is adapted
to Fn. We also refer to such Fn as filtrations.

1.2 Martingales

The most important part (to me anyway) of this section is Martingale processes:

Definition 1.2.1 (Martingale). Let {Xn}n∈N be a process defined on (Ω,F , P) and adapted to Fn. Then
we say {Xn}n∈N is a Martinagle process (or just Martingale) if

E[Xn+1|Fn] = E[Xn] a.s. (1.2)

We call it sub-Martingale if = is changed to ≥, and super-martingale if = changed to ≤.

Remark 1.2.1. The definition of super and sub Martingale might seem to be the opposite case, for reason of
the naming, see section in ([CZ01]) about application of maringle on super and sub harmonic functions.

One of the consequences of the above definition is the following:

Lemma 1.2.1. Suppose {Xn} is a martinagle w.r.t. the filtration Fn, then

E[Xn|Fm] = Xm a.e. for all m ≤ n. (1.3)

It can be easily seen by induction.
Given a Martingale and an increasing convex function, we can create a submartingale out those

two by Jessen’s inequality:

Proposition 1.2.1. Let φ be an increasing convex function, and let {Xn} be a submartingale w.r.t. Fn, then
the following is a sub-martingale with respect to the same filtration:

φ(Xn). (1.4)

This is a direct consequence of the Jessen’s inequality for conditional expectation: E[φ(Xn)|Fn−1] ≥
φ(E[Xn|Fn−1]) = φ(Xn−1).

An immediate corollary:

Corollary 1.2.1. Let Xn be super-martingale, then {Xn ∧ A} is a super martinagle.

Proof. {−Xn} defines a sub martingale, then −Xn ∧ A is a submartingale, so Xn ∧ A is a super
martiangle.
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One notice that a submartingale is very close to be a (true) martingale. Say Xn is a sub mar-
tingale, we might want to ask if we can subtract a little something from each step Xn to make it
a martingale. The answer is yes, the following object is what we need to subtract it from the sub
martinagle.

Definition 1.2.2. Let Zn be a sequence of nonnegative random variables such that

1. Z0 = 0 a.s. and Zn ≤ Zn+1 for all n ∈ N.

2. E[Zn] < ∞ for all n ∈ N.

Then we say Zn is a sequence of increasing random variables, or just call it an increasing process.

Here is a theorem that tells us we can decompose a submartingale into sum of a martinagle and
an increasing process.

Proposition 1.2.2 (Doob’s Decomposition). Let Xn be a sub martingale adapted to Fn, then there is an
increasing predictable process Zn and a martinagle Yn, such that

Xn = Yn + Zn a.e.

Proof. Assume n starts at 1 and X0 = 0.
We can create a martingale out of the difference of Xn − Xn−1. The following sum is obviously

a martiangle:

Yn =
n

∑
k=1

Xk − E[Xk|Fk−1]

since when conditioning it with Fn−1, the last term of the sum disapears and the second to the last
term is Fn−1 measurable. Now we want to see if there is an increasing Zn satisfies the definition.
We can write

Xn =
n

∑
k=1

Xk − Xk−1

then

Zn ≜ Xn − Yn =
n

∑
k=1

[(Xk − Xk−1)− (Xk − E[Xk|Fk−1])]

=
n

∑
k=1

(E[Xk|Fk−1]− Xk−1) ≥ 0

where the last equality is due to Xn forms a submartingale. In Zn, each term in the sum is nonneg-
ative, hence Zn is increasing.

Now we take a look at Zn and note limn→∞ E[|Zn|] = limn→∞ E[Zn] exists, possibly infinite, by
monotone. Let’s call the pointwise limit of this process Z∞ ≥ Zn for all n. So if Zn is L1 bounded
in the since the limit of integral is finite, then E[Z∞] is finite, so it is uniformly integrable. An
consequence of this is the following:

Proposition 1.2.3. Suppose {Xn} is L1 bounded, then {Yn}, {Zn} are also L1 bounded. Also, if {Yn} is
uniformly integrable, then {Ym}, {Zn} are also uniformly integrable.
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Proof.

Zn = Xn − Yn ≤ |Xn| − Yn ⇒ E[Zn] ≤ E[|Xn|]− E[Y1]

This shows if Xn is L1 bounded, then {Zn} is L1 bounded as well, and it is uniformly integrable by
above sentences. Then by

E[|Yn|] ≤ E[|Xn|] + E[Zn]

we see that if Xn is L1 bounded (or uniformly integrable), then so is Yn.

1.3 Optional Time

Here I adapt Chung’s definition in ([CZ01]):

Definition 1.3.1. Let(Ω,F , P) be a probability space and let {Fn}n∈N be a filtration, let τ be a random
time, that is, τ(ω) ∈ Z+ and τ measurable. We say τ is an optional time if

{τ = n} ∈ Fn, ∀n ∈ N.

Which is equivalent to

{τ ≤ n} ∈ Fn, ∀n ∈ N.

This same thing is called stopping time in ([Dur19]), and the sampling theorem is called stopping
theorem in him book.

Definition 1.3.2. We denote Fτ be the σ field that contains all Λ ∈ F∞ ≜
⋃

n∈N Fn, such that

Λ ∩ {τ ≤ n} ∈ Fn.

Definition 1.3.3. Let Xn be a random process and τ be a optiona time, then we define

Xτ(ω) ≜ Xτ(ω)(ω)

where τ(ω) is a positive integer.

Here are some properties of Fτ, we omit the proof since that is just busy work:

Proposition 1.3.1. Let τ be a optional time, then we have

1. Fτ is a σ field.

2. τ ∈ Fτ.

3. A fixed positive number is a optional time.

4. If σ is an optional time, then σ ∧ τ is also an optional time.

5. If σ is another optional time, then Fτ∧σ ∈ Fτ
⋂Fσ.

6. Xτ ∈ Fτ.

I’ll prove the last one since Chung says this is an excercise we should not miss
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Proof. Suppose Xn are real valued and suppose B is a Borel set of the real line, then consider

Ξ = {ω ∈ Ω : Xτ(ω)(ω) ∈ B} =
⋃
n

(
{τ(ω) = n} ∩ {Xn(ω) ∈ B}

)
Now we note that {τ(ω) = n} ∈ Fn by definition and {Xn ∈ B} ∈ Fn also by definition of Fn
measurable. So

Ξ ∩ {τ = n} = {τ = n} ∩ {Xn ∈ B} ∈ Fn

so σ(Xτ) ∈ Fτ.

Remark 1.3.1. Suppose the index set is the positive real line, then similar proof would still work if the
filtration is ”continuous” in certian sense, and we just need to find a dense set of the real line.

The next theorem tells use stopping times to create new (sub/super) martinagles:

Theorem 1.3.1 (Optional Sampling Theorem). Let Xn be a super martingale, and let τ, σ ≤ m be two
bounded stopping times such that σ ≤ τ, then {Xτ; Xσ} forms a super-martingale with respect to the
filtration {Fτ,Fσ}.

Proof. The idea of the proof is to decompose Λ ∈ Fτ into Λn = {τ = n} ∩ Λ ∈ Fτ by definition, a
collection of disjoint sets. Now look at Λn ∩ {σ ≥ n} = Λn ∩ {σ < n}c ∈ Fn.

The theorem will be true if the following inequality holds∫
Λn

Xτ ≥
∫

Λn
Xσ, ∀n. (1.5)

We want to work with non random times, namely, integers as subscripts, so we do the following:
rewrite this as ∫

Λn∩{σ≥n}
Xn −

∫
Λn∩{σ≥m+1}

Xm+1 ≥
∫

Λn∩{n≤σ≤m}
Xσ

This is because τ ≤ σ ≤ m and note that the second term on the left is actually zero. We decompose
the right hand side into

m

∑
j=n

∫
Λn∩{σ=j}

Xσ =
m

∑
j=n

∫
Λn∩{σ=j}

Xj (1.6)

and we write the left hand side as a telescoping sum:

m

∑
j=n

(∫
Λn∩{σ≥j}

Xj −
∫

Λn∩{σ≥j+1}
Xj+1

)
(1.7)

Now we compare those two sums term by term, if each terms of (1.7) is greater than each term of
(1.6), then (1.5) will be true, so let’s check:∫

Λn∩{σ≥j}
Xj −

∫
λn∩{σ≥j+1}

Xj+1 −
∫

Λn∩{σ=j}
Xj =

∫
Λn∩{σ≥j}

Xj −
∫

Λn∩{σ=j}
Xj −

∫
λn∩{σ≥j+1}

Xj+1

=
∫

Λn∩{σ≥j+1}
Xj −

∫
Λn∩{σ≥j+1}

Xj+1

which is nonnegative by definiton of super martingale. So (1.5) is true.
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Remark 1.3.2. One immediate generalization of this theorem is that if we have a sequence of bounded optional
time, α1 ≤ α2 ≤ .... then {Xαn}n will form a super martingale w.r.t Fαn when {Xn} is a super martingale.

Remark 1.3.3. Note that if we change super to sub or simply just martinagle, then theorem is still true.

Now we want to see if we still have similar result when τ and σ are unbounded optional times.
In this case, we will need X∞ to be defined, otherwise Xτ1τ=∞ does not make sense.

Definition 1.3.4. Let {Xn}n∈N be martinagle, then we say it has an last element when there is some
random variable, call X∞ such that E[X∞|Fn] = Xn and X∞ ∈ ⋃

n∈N Fn. We denote such process as
{Xn, n ∈ N∞}, where N∞ denote N ∪ {∞}.

Similar definitions for super and sub martinagles with last element: E[X∞|Fn] ≥ Xn and E[X∞|Fn] ≤
Xn.

In the case of a martingale, it can be seen as the whole process is generated by a single integrable
random variable with a set of filtration. We first state the optional sampling theorem for this simple
case for unbounded optional times:

Theorem 1.3.2. Let let Y ∈ L1 and let {Xn} be such that Xn = E[Y|Fn] where {Fn}n is a filtration. Then
for any two optional time τ ≤ σ, we have first

Xα = E[Y|Fα]

E[Xσ|Fτ] = Xτ.

Proof. Let Λ ∈ Fτ, as before, we can decompose it into a collection of disjoint sets: Λn = {τ =
n} ∩ Λ ∈ Fn. First we show integrability:

|Xn| ≤ E[|Y||Fn],

so

E[|Xτ|] =
∞

∑
n=1

∫
τ=n

|Xτ| =
∞

∑
n=1

∫
τ=n

|Xn| ≤
∞

∑
n=1

|Y| = E[|Y|].

Now we show the first identity:∫
Λ

Xτ =
∞

∑
n=1

∫
Λn

Xτ =
∞

∑
n=1

∫
Λn

Xn =
∞

∑
n=1

∫
Λn

Y =
∫

Λ
Y.

For the second identity, recall the tower property:

Xτ = E[Y|Fτ] = E[E[Y|Fσ]|Fτ] = E[Xσ|Fτ]

Recall our task it to generalize the optional sampling theorem for general super(sub) martingales
with last element. We observe that we can decompose such super martinagle in the following self
explainatory way

Lemma 1.3.1. Let {Xn,Fn, n ∈ N∞} be a super martingale with last element, then it can be decomposed
into sum of super martinagle with last element being zero and a martingale. Namely,

Xn = Yn + X′
n

where

X′
n = E[X∞|Fn] Yn = Xn − X′

n ≥ 0.
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Now if we want to show sampling theorem for a super martiangle with an last element, then
only thing we have to do is to prove this for super martingale with last element being zero:

Proposition 1.3.2. Let {Xn,Fn, n ∈ N∞} be a super martingale with X∞ = 0. Then for any τ ≤ σ
optional times, we have

E[Xσ|Fτ] = Xτ.

Proof. Here, the first part of this proof follows the proof for Theorem 14: Let Λ ∈ Fτ and decompose
it as Λn = Λ ∩ {τ = n} and Λ∞ = Λ ∩ {τ = ∞}. Let j ≥ n ≥ 1 and by definition of super-
martinagle, we see that ∫

Λn∩{σ≥j+1}
Xj ≥

∫
Λn∩{σ≥j+1}

Xj+1

⇒
∫

Λn∩{σ≥j}
Xj −

∫
Λn∩{σ≥j+1}

Xj+1 ≥
∫

Λn∩{σ=j}
Xj

since Λn ∈ Fn ⊂ Fj, {σ ≥ j + 1} = {σ ≤ j}c ∈ Fj. SUmming from j = n to m on both sides gives
us ∫

Λn∩{σ≥n}
Xn −

∫
Λn∩{σ≥m+1}

Xm+1 ≥
∫

Λn∩{n≤σ≤m}
Xσ

and since we assumed non-negative, we can drop the minus term on the left hand side, and since
σ ≥ τ, we may also drop σ ≥ n part on both side of the integral, change Xn to Xτ to get∫

Λn
Xτ ≥

∫
Λn∩{σ≤m}

Xσ

Note that the right hand side is positive and non-decreasing with respect to m, so we may take
m → ∞ and take the sum over j ∈ N to obtain

∑
j∈N

∫
Λn

Xτ ≥ ∑
j∈N

∫
Λn∩{∢<∞}

Xσ

⇒
∫

Λ∩{τ<∞}
Xτ ≥

∫
{τ<∞}∩Λn

Xσ

⇒
∫

Λ∩{τ<∞}
Xτ +

∫
Λ∩{τ=∞}

Xτ ≥
∫
{τ<∞}∩Λ

Xσ +
∫

Λ∩{τ=∞}
Xσ

the last inequality is true becasue on the set σ = ∞ we have Xσ = 0 by assumption, and τ ≤ σ.
Combine the sum we have the desired result.

Now combining the discussion and the theorems above, we have the following theorem which
we call Optional Sampling Theorem:

Theorem 1.3.3 (The Optional Sampling Theorem). If {Xn,Fn, n ∈ N∞} is a super martiangle with last
element and τ ≤ σ are two arbitrary optional times, then we have

Xτ = E[Xσ|Fτ].
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1.4 Some Convergence Results and Inequalities

For a given, say, submartingale, it would be good to know when it converges, either in probability,
a.e, distribution or Lp. Let’s first do a.e.

Now here is a wierd way to see when it converges: we want limXn = limn→∞Xn a.e. We
recall the definition of lim sup and lim inf: limn→∞xn = limn→∞ supm≥n xm and limn→∞xn =
limn→∞ infm≥n xm, call them α and β respectively. Note further that the sup is decreasing when
taking limit and the inf is increasing when taking limit (might not be strictly increasing or de-
creasinng). So if it happens that xn does not converge, then α < β, but this means that {xn} as
a process would oscillate between α and β for infinitely many times. More specifically, it would
oscillate from at or above β, say some point α′ < β to some point at or below β, say β′ > α′ infinitely
many times, and this is an if and only if ”statement”. If this happens, then the process will go from
α′ up to β′ infinitely many times. So if there is some condition such that the process Xn oscillate
finitely many times with probability one for any α, β, then we’d show lim sup equals to lim inf and
we’d show convergence. Even better, we only need to show it for a dense set, say α, β ∈ Q. So we
will proceed according to this strange idea.

To formalize this idea, we need a few things first:

Definition 1.4.1. We say a process {Hn}n∈N is predictable with respect to Fn if

Hn ∈ Fn−1 ∀n ∈ N.

And here is a definition we will never use again (I think) after this:

Definition 1.4.2. Let {Xn} be an adapted process and Hn be a predictable process, then we define the
Martinagle transform (H · X)n as

(H · X)n =
n

∑
k=1

Hn(Xn − Xn−1).

Here is why it has this name:

Proposition 1.4.1. Let {Xn} be a super martingale, then {(H · X)n} is still a super martingale assuming
Hn ≥ 0 are predictable and bounded.

Proof. This is straight forward:

E [(H · X)n |Fn−1] = ∑
1≤k≤n

E[Hk(Xk − Xk−1)|Fn−1]

= ∑
1≤k≤n−1

Hn(Xk − Xk−1) + Hn (E[Xn|Fn−1]− Xn−1)

= (H · X)n−1 + Hn (E[Xn|Fn−1]− Xn−1) ≥ (H · X)n−1 .

Where we used Xn is super martinagle, and Hn ∈ Fn.

Remark 1.4.1. It works for super-martingale, then it works for sub-martinagle.

After this, we want to formalize the concept of the process go from α to β for α < β. So we
define the following thing inductively:

Let K0 = −1 and define Kn for n ≥ 1 to be

K2n−1 ≜ min
k

{N2n−2 < k and Xk ≤ α}

K2n ≜ min
k

{N2n−1 < k and Xk ≥ β}.
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for some any α < β. Now it would be easy to verify that Nk’s are optional times. Now we want to
have something to represent how many time the process Xn goes from α to β, here is one: let Hm
be defined as follows:

Hn =

{
1 N2k−1 < n ≤ N2k

0 else.

By the name, we note that Hn is predictable: {N2k−1 < n ≤ N2k} = {N2k−1 ≤ n − 1} ∩ {N2k ≤ n −
1}c ∈ Fn−1. So we can use martinagle transform to make a submartingale out of a submartingale.
Finally, we want to count how many times the ”upcross” happened from step one to step n, so we
define Uα,β,n = maxk{N2k ≤ n}, and we see that Uα,β,n does this job.

Then, our next task to to get some sort of bound for Uα,β,n such that it gets us Uα,β,n < ∞ a.e.
Here is a theorem that does that

Theorem 1.4.1 (Up-Crossing Inequality). Let Xn, Uα,β,n be as above, then we have

(β − α)E[Uα,β,n] ≤ E[(Xn − α)+]− E[(X0 − α)+].

Remark 1.4.2. From this theorem, it is clear that one of the posible conditions to make the number of crossing
finite a.e. is supn∈N E[X+

n ] < ∞.

Proof. Let Yn = (Xn − α)+ + α, then the path of Yn would cross the interval [α, β] the same number
of times as Xn (Yn would stay at α if Xn is less than α, and the rest of the behaviors of the two
processes are the same). We note that ∑n

k=1 Kn(Yn − Yn−1 record the part of the trajectories of Yn
that crosses [α, β] from below to above, but with a bit longer since it also record the distance from β
to a little above β. Let Kn = 1− Hn so Kn is predictable and nonnegative, so it turns a submartinagle
into a submartinagle via Maringale transform as well. Then we note that

Yn − Y0 =
n

∑
k=1

Yn − Yn−1

=
n

∑
k=1

(Kn + Hn) (Yn − Yn−1)

=
n

∑
k=1

Kn(Yn − Yn−1) +
n

∑
k=1

Hn (Yn − Yn−1)

= (K · Y)n + (H · Y)n .

Then as indicated before, both H ·Y and K ·Y forms a martinagle, and they both start as nonnegative
random variables, so we when take the expectation, we get the following Inequality

E[Yn]− E[Y0] ≥ E [(K · Y)n] ≥ E[(β − α)Uα,β,n].

Now we are ready to prove a pointwise convergence theorem:

Theorem 1.4.2 (Submartinagle Convergence Theorem). Let Xn be a submartinagle w.r.t Fn. Suppose
supn∈N E[X+

n ] < ∞, then Xn converges pointwise to a random varibale X that is integrable.

Remark 1.4.3. Note that the theorem says two things: Xn → X pointwise a.e., and E|X| < ∞. It does not
mean Xn → X in L1.

The proof of this theorem is just a formalization of the intuition we had in the beginning.
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Proof. By Up-Crossing inequality, we see that

lim
n→∞

E[Uα,β,n] < sup
n∈N

E[X+] + |a| < ∞

which implies P
(
Uα,β,∞

)
= 0, which is true for all α, β ∈ Q. Take union of those countable sets to

get

P

 ⋃
α,β∈Q

{
Uα,β,∞ < ∞

} = 1

and observe (or recall the description before)⋃
α,β∈Q

{
Uα,β,∞ < ∞

}
⊃
{

limn→∞Xn > limn→∞Xn

}
so we have desired convergence. Now the task is to show E[|X|] < ∞. That is a result of Fatou’s
lemma:

lim inf
n→∞

E[X+
n ] ≥ E[X+]

Also, by the nature of submartingale, we see

E[X−
n ] = E[X+

n ]− E[Xn] ≤ E[X+
n ]− E[X0]

So apply Fatou’s lemma again we see E[X−] ≤ lim infn→∞ E[X+
n ]−E[X0] ≤ supn E[X+]−E[X0] <

∞. Hence the theorem is proved.

Here is a trivial consequence of submartingale convergence theorem:

Corollary 1.4.1. Let Xn be an negative sub martinagle, or positive super martinagle, then it converges a.e.
to an integrable random variable X.

Before we go any furhter, let’s revisit optional time for a short while. Let τ be a optiona time,
that is, {τ ≤ n} ∈ N . Note {τ ≥ n} = {τ < n}c = {τ ≤ n − 1}c ∈ Fn−1. So recall Proposition 38

and let Hn = 1τ≥n, then if {Xn} is a martinagle with respect to {Fn}n, then

(H · X)n =
n

∑
k=1

1τ≥k (Xk − Xk−1) = Xn∧τ − X0

is also a martinagle, so we conclude:

Theorem 1.4.3. If {Xn} is a martinagle, and τ is a stopping time, then {Xn∧τ} is also a martingale.

We proved (basically) the same theorem in previous section with a more straight forward
method in the sense of we did not use additional tools.

We also proved the following theorem in the previous section, but there is also an way to prove
it via Maringale transform:

Theorem 1.4.4. Xn be a submartingale and let τ ≤ σ be two stopping times bounded by m ≥ 1, then

E[Xτ] ≤ E[Xσ].
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Proof. The proof to previous theorem gives us a hint that we need to use maringale transform for
some predictable Hn = 1· for which (H · X) gives a submartingale. Since this transform gives us
some telescoping sum, we want the first nonzero term to contain −Xτ and the last nonzero term to
contain Xσ. This indicates that we should look lat

Hk = 1τ<k<σ.

Note {τ < k} = {τ ≤ k − 1} ∈ Fk−1 and {k ≤ σ} = {σ < k}c = {σ ≤ k − 1}c ∈ Fk−1, so Hk is
predictable. Now consider the maringale transform:

(H · X)n =
n

∑
k=1

1τ<k≤σ (Xk − Xk−1) = Xσ∧n − Xτ∧n.

W Which is a submartingale by previous theorem. Now we take n = m + 1 to get

E[Xσ]− E[Xτ] = E[Xσ∧(m+1) − Xτ∧(m+1) ≥ E[Xσ∧0 − Xτ∧0] = 0

which proves our statement.

The following two inequalities are useful (important):

Proposition 1.4.2 (Doob’s Maximal Inequality). Let {Xn} be a submartingale, and let λ > 0, then

λP[ max
1≤m≤n

X+
n ≥ λ] ≤ EXn1A ≤ E[X+

n ].

Proof. Let τ = minm{X+
n ≥ λ} which is a bounded stopping time, and denote A = {max1≤m≤n X+

n ≥
λ}

λP[A] =
∫

A
λdP ≤

∫
A

Xτ∧ndP ≤ E[Xn] ≤ E[X+
n ]

where the last two inequalities are due to Theorem 20 and Xn = X+
n − X−

n .

Remark 1.4.4. Note that if we change max X+
n to max Xn, we get the same result since λ > 0.

Remark 1.4.5. Compare this to the Kolmogorov’s Maximal Inequality, we see K-Max inequality is a special
case of Doob’s Maximal Inequality.
Remark 1.4.6. We can easily extend the the above inequality to the case of countably infinite index

λP[sup
n≥1

X+
n ≥ λ] ≤ sup

n≥1
E[X+

n ]

Other forms of Doob’s Maximal Inequality:

Proposition 1.4.3. Let {Xn} be a super-martingale and let λ > 0, then

λP

[
max

1≤m≤n
|Xn|

]
≤ E[X0] + 2E[|Xn|].

Proof. The moral of the proof is the same. Let τ = n ∧ max1≤m≤n{|Xn| ≥ λ}, so τ is a stopping
time. Denote A = {max1≤m≤n |Xn| ≥ λ}.

P [A] =
∫

A
1 ≤

∫
A

|Xτ|
λ

≤ 1
λ

E[|Xτ|].

Decompose E[Xτ] into positive and negative parts

E[|xτ|] = E[X+
τ ]− E[X−

τ ] = E[Xτ]− 2E[X−
τ ] ≤ E[|X0|] + 2E[X−

τ ].

Now we note −Xn is sub-martinagle, and X−
n = (−Xn)

+ which is also a submartinagle. So we can
apply optional sampling theorem for bounded stopping time for X−:

E[|X0|] + 2E[X−
τ ] ≤ E[|X0|] + 2E[X−

n ] ≤ E[X0] + 2E[|Xn|].
Plug those all back into the first inequality we get desired result.
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Uniformly Integrable (s)Martingales

Uniformly integrability provides nice convergence results for submartingales. Recall the definition
and a convergence theorem from the first chapter:

Definition 1.4.3 (Uniformly integrability). Suppose {Xt}t∈T is a family of random variables where T is
an index set, we say the family is uniformly integrable if

lim
M→∞

sup
t∈T

E
(
|Xt|1|Xt|≥M

)
= 0.

Proposition 1.4.4. Let Xn → X in probability, then the followings are equivalent:

1. {|Xt|r} is uniformly integrable.

2. Xt → X in Lr.

3. E[|Xt|r] → E|X|r < ∞.

Here is the main theorem of this uniformly integrable martingales:

Theorem 1.4.5. Let {Xn} be submartingales, then the following are the same:

1. {Xn} is uniformly integrable.

2. Xn → X∞ in L1.

3. Xn → X∞ in L1 and almost surely.

Proof. (1) ⇒ supn∈N E[|Xn|] ⇒ Xn → X∞ a.e. by maringle convergence theorem ⇒ Xn →p X∞ ⇒
Xn → X∞ in L1.

Now suppose (2) is true, then {Xn} must be bounded in L1, then by mtg convergence theorem
again it converges to X∞ a.e. so in probability, by Theorem 41 again it is uniformly integrable. So
(1) ⇐ (2) ⇒ (3). and (3) ⇒ (2) is obvious.

The above theorem is for submartingales, but if we have a true Martinagle, we can improve the
above theorem.

Lemma 1.4.1. Let {Xn}n∈N be a martingale with filtration {Fn}n∈N, and suppose Xn →L1 X for some X,
then we have

Xn = E[X|Fn], a.s. for al n ∈ N.

Proof. Note here besides L1 convergence we also have a.e. convergence. We need to show that for
all A ∈ Fn we have ∫

A
Xn =

∫
A

lim Xn

From the definition of Martingales, we also have the following expression for the left hand sdie:∫
A

Xn =
∫

A
E[Xm|Fn] =

∫
A

Xm ∀n ∈ N. (1.8)

Take the limit on the both sides of (1.8) on m to see
∫

A Xn = limm→∞
∫

A Xm, so we need to show

lim
n→∞

∫
A

Xn =
∫

A
lim

n→∞
Xn

but this comes directly from the definition.
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Now, realizing the fact that a martingale is also a submartingale, combined with Lemma 9, we
have the following improved theorem for martingales:

Theorem 1.4.6. Let {Xn} be a martingale, then the following are equivalent:

1. {Xn} is uniformly integrable.

2. Xn → X∞ in L1.

3. Xn → X∞ in L1 and almost surely.

4. There is X∞ integrable such that Xn = E[X∞|Fn] a.e.

Proof. Only thing we need to prove here is (4) implies (1) and it is straight forward

E
(
|Xn|1|Xn|≥M

)
≤
∫
|Xn|≥M

|X|∞dP.

However, by Chebyshev Inequality we see that

P[|Xn| ≥ M] ≤ 1
M

∫
|E[X∞|Fn]| ≤

1
M

∫
E|X∞||Fn =

1
M

E[|X∞|]

which goes to zero as M → ∞, so DCT will give us uniformly integrability result.

Now we state the converse of Lemma 9:

Lemma 1.4.2. Let X be an integrable random variable and let {Fn}n be a filtration such that Fn ↑ F∞,
where F∞ = σ(

⋃
n∈N Fn). Then we have

Xn ≜ E[X|Fn] → E[X|F∞] a.e. and in L1.

Proof. This is a simple observation that {Xn}n∈N defines a martinagle w.r.t the filtration {Fn}n∈N

with last element being E[X|F∞] (the tower property of conditional expectation). Then apply
previous theorem.

Here is an immediate consequenceL

Theorem 1.4.7 (Levy’s 0-1 Law). Let Fn ↑ F∞. Suppose A ∈ F∞, then

E[1AFn] → 1A a.e.

Then we can derive Kolmogorov’s zero one law fairly easily:

Theorem 1.4.8 (Kolmogorov’s 0-1 Law). Let {Xn} be a seqeunce of independent random variables. Let
T = ∩n∈Nσ(Xn, Xn+1, ...). Then if A ∈ T , then P[A] ∈ {0, 1}.

Proof. Let Fn = σ(X1, ..., Xn), and let F∞ = σ(X1, X2, ...), then Fn ↑ F∞, and A ∈ F∞. So by
Levy’s zero one law, E[1A|Fn] → 1A. However, A ⊥ Fn for all n, so E[1A|Fn] = P[A]. This means
P[A] = 1A, so it is either one or zero.

The last thing I want to write about is the Doob’s Lp inequality in its general form for discrete
sub martinagle that will be useful in continuous martingale case.
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Theorem 1.4.9. [Lp Inequality] Let 1 < p < ∞ and q be its Holder conjugate, that is, 1
q +

1
p = 1. Suppose

that {Xn} be a positive submartingale such that

sup
n≥1

E[|Xn|p] < ∞ (1.9)

Then supn∈N Xn ∈ Lp and

∥sup
n∈N

Xn∥p ≤ q sup
n∈N

∥Xn∥p

’

Proof. By Jessen’s inequality, condition 1.9 implies supn E[|X|] < ∞, then by Mtg convergence
theorem it converges a.e. to some X and by Proposition 41, it is uniformly integrable and Xn → X
in Lp and X ∈ Lp.

Now we consider the extension of Doob’s maximal inequality (by continuity of measure and
monotone) we have

λP[sup
n

Xn ≥ λ] ≤
∫

supn Xn≥λ
X∞.

Now let Y = supn Xn and let’s pretend for a moment that Y ∈ Lp, then we can calculate the
moments of Y via its tail probability:

E[Yp] =
∫ ∞

0
ptp−1P[Y ≥ t]dt

≤
∫ ∞

0
ptp−1

∫
Y≥t

X∞dPdt

=
∫ ∞

0
ptp−1

∫
1Y≥tX∞dPdt

=
∫

Ω
X∞

∫ Y

0

1
λ

ptp−1dtdP

= qE[X∞Yp−1]

Now we use Holder’s inequality with exponent p on X∞ and q = p
p−1 on Yp−1 to get E[Yp] ≤

q∥X∞∥p∥Y∥p−1
p which implies ∥Y∥p ≤ q∥X∞∥p. So we need to check the integrability of Y.

In this case, replace Y by Y ∧ M for positive M in above calculate and get the same bound for
Y ∧ M in the end, and we see that the bound for ∥Y ∧ M∥p does not depend on M, so take the limit
inf and use Fatou’s lemma we should see the result.

Remark 1.4.7.



Chapter 2

Stochastic Integration

The structure here is a combination of ([KS12]) and ([LG16]). We will first generalize the the concept
of maringle from discrete to continuous time, and talk about the analogies of Doob’s inequalities,
optional sampling and uniform integrability in continuous setting (by the way, they are exact same
result from density argument, at least in the case of continous martingales).

Then, we will talk about gaussian process, and then dive into existance of Brownian motion,
which will be shown by existance of white noise, a more general wiener process along with Kol-
mogorov’s continuity theorem. Then we investigate pathwise properties of Brownian motion in-
cluding reflection principle, zero-one law, distributional properties etc.

Then we will talk about construction of stochastic integral and their basic properties, as well as
the change of variable formula which is called Ito’s lemma due to Ito.

2.1 Continous time Martingales

The Setup

Again, we need to establish the concept of filtration in continuous setting:

Definition 2.1.1 (Filtration). Let {Ft}R+ be an increasing family of σ-fields indexed by the positive real
line. increasing means

Fs ⊂ Ft∀s ≤ t, s, t ∈ R+.

We call this family of σ-field a filtration and (Ω,F , {Fn}n, P) a filtered probability space.

In principle, we want to make our fintration as nice as possible for a given random process
index by the positive real line, so we define

Ft+ =
⋂
σ>t

Fσ.

If we have a filtration like this, it is called right continuous. Futher more, let F0 contians all
subsets of the null sets of the underlying probability measure. This can be done as follows: let
N be the collection of sets that contains all the null sets of P and let F ′

0 = σ (F0 ∪N ) and define
F ′

t =
⋂

s>t σ(Fs ∪ N ), then we’d have a filtration that is right continous and contains all the null
sets of the probability measure, and we call these two conditions the usual condition for filtrations.
Note that contains all subsets of null sets is stronger than completion of a σ algebra.

Now we want measurabilities of a continous stochastic process:

49
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Definition 2.1.2. Let {Xt}t∈R+ be a continous time stochastic process, we say it is measurable if

X·(·) : (ω, t) → Xt(ω)

is measurable with respect to F ⊗B(R+).

But here is the measurability we would want to work with:

Definition 2.1.3. Let {Xt}t∈R+ be a continous time stochastic process, we say it is progressively measurable
if

X·(·) : (ω, t) → Xt(ω)

is measurable with respect to Ft ⊗B([0, t]).

Here is a theorem that takes care of measurabilities for us (without proof):

Proposition 2.1.1. If (Xt)t is an adapted right/left continous process, then above two measurabilities will
both be satisfied.

Now we need the concept of stopping time, which is the ”same” as optional time for discrete
process, but optional time becomes something else in continuous time setting:

Definition 2.1.4. Let τ : Ω → [0, ∞] be a random time, we say it is a stopping time to the filtration
{Ft}t∈R+ if

{τ ≤ t} ∈ Ft ∀t ≥ 0,

and the σ-field of the past before τ is defined to be

Fτ = {A ∈ F∞, A ∩ {τ ≤ t}} ∈ Ft.

and τ is saied to be optional time if

{τ < t} ∈ Ft ∀t ≥ 0

and

Fτ = {A ∈ F∞ : A ∩ {τ < t} ∈ Ft}

Now let’s get rid of the concept of optional time:

Proposition 2.1.2. Let τ be an optional time of Ft, if Ft is right continous, then τ is also a stopping time.

Proof.

{τ ≤ t} =
⋂
s>τ

{τ < s}

and we note that τ ∈ Fτ, so {τ < t} ∩ {τ < s} ∈ Fs∧t. So above set is also in Ft by right
continuous.

From now on, we will always assume our filtration is right continous and contains all the subsets
of null sets. In this case, we don’t have to work with optional time.

Here are some facts of stopping times and the σ algebra associated with the stopping time from
([LG16]), the proof is mostly set algebra manipulations, so we omit.
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Proposition 2.1.3. Let T, S be stopping time w.r.t Ft, and suppose S ≤ T, then

1. FT ⊂ FT+, and if filtration is right continous (which will always be the case), then they are equal.

2. T = t for a constant t is a stopping time and FT = Ft.

3. T is FT measurable.

4. Let A ∈ F∞ and let

TA(ω) =

{
T(ω) if ω ∈ A
∞ ω /∈ A

Then A ∈ FT iff TA is a stopping time.

5. S ∧ T, S ∨ T are stopping times, and FS∧T = FS ∩ FT.

6. If (Sn)n is a monotone increasing/decreasing sequence of stopping times, then S = lim ↓ Sn or
S = lim ↓ Sn are stopping times.

Here is a way to verify if some random time is a stopping time and how to construct stopping
time take only countably many values that decreases to arbitrary stopping time:

Proposition 2.1.4. Let T be a stopping time and S ∈ F be a random variable such that S ≥ T. Then S is a
stopping time.

Also, the following is a sequence of stopping times that only take countably many values:

Tn =
∞

∑
k=0

k + 1
2n 1{k−n<T≤(k+1)2−n−1} + ∞1{T=∞}.

Second part is obvious, let’s show first part

Proof. By definition we have

{S ≤ t} ∩ {T ≤ t} ∈ FT

but if S ≤ t, then T ≤ t, so

{T ≤ t} = {S ≤ t} ∩ {T ≤ t} ∈ FT.

Here are two useful examples of stopping time

Proposition 2.1.5. Let {Xt} be a stochastic process takes value in a complete metric space that is adapted to
{Ft}t, let O be an open set and F be an closed set. Then the followings are true

1. if Xt is right continous, then the following is a stopping time

T = inf
t
{Xt ∈ O};

2. if Xt is continous, then the following is a stopping time

T = inf
t
{Xt ∈ F}.

The idea of the proof is to use right continuity and continuity to make uncoutable unions into
countable unions and still gives the same infomation on sets like {T ≤ t}.
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Martingale

The defintion of martinagle in the continuous setting is exactly like the definition in the discrete
setting, just change N to R+. So we do not repeat here.

The following fact could be usefulThe following facts might be useful:

Lemma 2.1.1. Submartinagles with constant expectation is a martinagle.

Proof. Let A ∈ Fs where s ≤ t, consider∫
Ω

Xt −
∫

Ω
Xs =

∫
Ω
|E[Xt|Fs]− Xs| = 0

so E[Xt|Fs] = Xs a.e.

Here is an important property:

Definition 2.1.5 (Independent Increments). Let Xt be a process that is adapted to Ft (filtration), we say
Xt has independent increments if for all s ≤ t we have

Xt − Xs ⊥ Fs,

in particular,

E[Xt − Xs|Fs] = E[Xt − Xs]

We note martinagles almost have this property:

Proposition 2.1.6. Let Xt be martingale adapted to Ft, then Xt has orthogonal increments.

The proof is simple:

Proof.

E[Xt − Xs|Fs] = E[Xt|Fs]− Xs = Xs − Xs = 0.

Now apperently, if a process has independent increments, and it has constant expectation, then
it would be a martingale (assuming integrability). Here is a theorem on that, which will come in
handy later:

Theorem 2.1.1. Let Xt be a process with independent increments, that is, Xt − Xs ⊥ Ft. Then

1. If Xt ∈ L1 for all t, then Zt = Xt − E[Xt] is a martinagle.

2. If Xt ∈ L2 for all t, then Yt = Z2
t − E[Z2

t ] is a martingale, where Zt as in (1).

3. If for some θ, Et = E[exp(θXt)] < ∞ for all t ≥ 0, then exp(θXt)
E[Et]

is a martinagle.

Proof. (1):

E[Zt − Zs|Fs] = E[Xt − E[Xt]− Xs + E[Xs]|Fs]

= E[Xt − Xs|Fs]− E[Xt − Xs] = 0

where last equality from independence.
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(2):

E[Z2
t |Fs] = E[(Zt − Zs + Zs)

2 |S ]
= E[(Zt − Zs)

2 + 2Zs(Zt − Zs) + Z2
s |Fs]

= E[(Zt − Zs)
2] + Z2

s

= E[Z2
t ]− 2E(ZtZs) + Z2

s

However, E[ZtZs] = E[E[Zt|Fs]Zs] = E[Z2
s ], plug it in, we have the desired result.

(3):

E

[
exp(θXt)

Et
|Fs

]
= E

[
exp(θ(Xt − Xs)) exp(θXs)

E[exp(θ(Xt − Xs)) exp(θXs)]
|Fs

]
= E[exp(θ(Xt − Xs))]

1
E[exp(θ(Xt − Xs))]

exp(θXs)

E[exp(θXs)]

=
exp(θXs)

E[exp(θXs)]

where we used independence for the condition expectation and the ordinary expectation.

An immediate result is the following

Corollary 2.1.1. Let Xt be a stochastic process adapted to {Ft}t, and suppose Xt has independent increments
and has mean zero, then X2

t − E[X2
t ] is a martinagle.

We will recall this fact when doing quadratic variation and Brownian motion.
Here is an important formula that will simplify our future calculation greatly:

Proposition 2.1.7. Let {Xt} be an square integrable martingale, that is, Xt ∈ L2 for all t ≥ 0. Let {ti}n
i=0

be a partition of the interval [s, t], then

E

[
n

∑
i=1

(
Xti − Xti−1

)2 |Fs

]
= E[X2

t − X2
s ] = E[(Xt − Xs)

2].

In particular, above is true if we replace the conditional expectation with ordinary expectation.

Proof. We first calculate the conditional expectation of each term and recall the tower property for
conditional expectation:

E[
(
Xti − Xti−1

)2 |Fs] = E
[
E
[(

Xti − Xti−1

)2 |Fti−1

]
|Fs

]
Now the inner conditional expectation becomes

E
[

X2
ti
− 2Xti Xti−1 + X2

ti−1
|Fti−1

]
= E[X2

ti
|Fti ]− X2

ti−1
.

So the whole thing becomes

E[X2
ti
|Fs]− E[X2

ti−1
|Fs]

so the original sum is telescoping, hence we have the first identity. The second identity is obtianed
in the similar way:

E[(Xt − Xs)
2] = E[E[X2

t − 2XtXs + X2
s ]|Fs]] = E[X2

t − X2
s ].
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Inequalities for Continuous time Martingales

Here we basically have the same result as in discrete martinagle theories.

Proposition 2.1.8. Let (Xt) be an adapted process and let f : R → R+ (nonnegative) be a convex function
such that f (Xt) is integrable for all t ≥ 0, then

1. If Xt is a martiangle, then f (Xt) is a sub-martinagle.

2. IF Xt is a sub-martinagle and f is non-decreasing, then f (Xt) is a sub martingale as well.

Proof. The first assertion is straight forward.
(2)

E[ f (Xt)|Fs] ≥ f (E[Xt|Fs]) ≥ f (Xs)

where the last inequality requires f to be non-decreasing.

The Doob’s Maximal Inequality and Doob’s Lp Inequality extend easily to the continuous case:

Proposition 2.1.9. 1. Let (Xt)t be a super martinagle with right continuous sample paths, then for all
t > 0 and λ > 0, we have

λP[ sup
0≤s≤t

|Xt|] ≤ 2E[|Xt|] + E[|X0|].

2. Let (Xt) be a martinagle with continous sample paths, and suppose sup0≤s≤t E[|Xt|p] < ∞ for p > 1,
then

E

[
sup

0≤s≤t
|s|p
]
≤
(

p
p − 1

)p
E[|Xt|p].

Proof. For (2), it is just an extension of the discrete case of the Theorem 25. Let D = Q ∩ [0, t] ∪ {t},
then apply Theorem 25 to the martinagle (Xt)t∈D which is discrete and take the advantage of
continuity, the result here is easily seen.

(1) is a consequence of Proposition 40. Let Dm be a partition of [0, t], and it gets finer as m
increases and Dm ∈ Dm+1, also say D =

⋃
m≥1 Dm is dense in [0, t], then by the discrete case we

have

λP

[
max
i∈Dm

|Xi| ≥ λ

]
≤ 2E[Xt] + E[|X0|].

Now take m → ∞ we would obtain this inequality on the dense set D, and take advantage of right
continuity will get us the desired result.

Remark 2.1.1. If we change the interval [0, t] to [s, t] for s < t, above Proposition still holds.

Next we talk about up-crossing inequality in continous setting, where we require the submarti-
nagle to be right continuous. Here is the set up

For α ≤ β, Let τ1 = mint≥0{Xt ≤ α}, and define

σn = inf
t
{τn−1 ≤ t, Xt > β}

τn+1 = inf
t
{σn ≤ t, Xt < α}

Let F be a finite set, then we define the up-crossing number to be the maximum j such that σj ̸= ∞,
or in plain words, the number of up-crossings. Here is the upcrossing inequality, we state without
proof since it is just a generalization of the up-crossing in discrete case:
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Theorem 2.1.2. Let Xt be a submartinagle with right continuous sample paths, and suppose −∞ < α <
β < ∞ be real numbers, then we have

(β − α)E[U[s,t],α,β] ≤ E[(Xt − α)+] + |α|.

Convergence of Continuous Time Martinagles

Like above, results are very similar to the discrete case.

Theorem 2.1.3. Let Xt be a submartingale with right continous sample pathes, and suppose supt≥0 E[X+
t ] <

∞, then there is X∞ ∈ L1 such that Xn → X∞ a.e.

Remark 2.1.2. Note again here it does not say converge in L1.

Proof. The proof is of the same spirit as in the discrete case. For all α < β that are finite, by
Up-crossing inequality and the fact supt≥0 E[X+

t ] ≤ C < ∞, we have

E[U[0,n],α,β] ≤
E[(Xn − α)+] + α

β − α
< Cα,β < ∞

for all α, β where Cα,β only depens on α and β. So we take n → ∞, we see U[0,n],α,β < ∞ a.e. so

P

 ⋃
α<β,α,β∈Q

U[0,∞],α,β < ∞

 = 1

and so by the same logic as in the discrete case, we have a.e. convergence. To show X∞ ∈ L1, we
apply Fatou’s lemma, but first observe that

E[|Xn|] = E[X+
n ] + E[X+

n ]−
(
E[X+

n ]− E[X−
n ]
)
= 2E[X+

n ]− E[Xn] ≤ C′ − 2E[X0]

for some C′. So

∞ > limnE[|Xn|] ≥ E[|X∞|].

We give a special name for (sup/sub)martingale with last element:

Definition 2.1.6. Let (Xt) be a martingale, we say it is closed if there is some X∞ ∈ L1 such that

Xt = E[X∞|Ft], ∀t ∈ R+.

Here is the convergence result that is related to uniformly integrability:

Theorem 2.1.4. Let (Xt) be a martingale with right continuous sample pathes, then the following are equiv-
alent:

1. Xt is closed;

2. Xt is uniformly integrable.

3. Xt converges to some X∞ both a.e. and in L1.
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Remark 2.1.3. If any of the above condition is satisfied, then the process can simply be written as (E[X∞|Ft]),
very nice condition.

Proof. (1) ⇒ (2) (exactly same proof as before): Call the last element X ∈ L1, let M > 0 and
consider ∫

|Xt|≥M
|E[X|Ft] ≤

∫
1|Xt|≥M|X| (2.1)

but

P [|Xt| ≥ M] ≤ 1
M

E[|Xt|] ≤
E[|X|]

M
→ 0, as M → ∞.

So take M to ∞, the left hand side of (2.1) converges to zero.
(2) ⇒ (3): By submartinagle convergence theorem, we have convergence a.e., and uniformly

integrability implies convergence in L1.
(3) ⇒ (1): Let A ∈ Ft, then

∫
A Xσ =

∫
A Xt for all σ ≥ t by definition of martingale. Take σ to

∞, by L1 convergence, we see
∫

A X∞ =
∫

A Xt for all A ∈ Ft and for all t.

Optional Sampling

We will use the following thing to prove optional sampling theorem.
In the discrete setting, we worked with martingales that have a starting point but not necessarity

have an end point. In the proof of Doob’s Maximal inequality in the continuous setting, we took
a dense set from the interval [0, t], which contains both 0 and t, and this is a case where a discrete
martingale that has a first and a last element. There is one case we have not talked about yet, which
is a (sub/super) martingale that has an end point but not a starting point. One of such thing can
be created by, for example, taking a dense set in [0, t] that includes t but not zero, call this set A.
And if (Xt) is a continuous martingale, then {Xi}i∈A would be a martinagle that has an end point,
but not a starting point.

In discrete setting, we call such (sub/super) martingales the backward (sub/super) martin-
gales, it is nothing but a mtg with an end element but without a starting element. Since it has
an end element, we might as well take advantage of it: Let −N be the set of nonpositive integers
with its natrual orders, and suppose F−n ⊃ F−n−1, then a stochastic process {X−n}−n∈−N with
E[X−n|Fn−1] = Xn−1 is a backward mtg.

Here are some convergence results for backward mtg’s

Proposition 2.1.10. Let (X−n)−n∈−N be a backward sub-mtg with respect to F−n as described above. Then

lim
n→∞

X−n = X−∞, a.e. for some X−∞,

and X−∞ ∈ [−∞, ∞).

Remark 2.1.4. In the case of a backward martingale, we don’t need any condition for it to converge a.e., but
we lose integrability on the convergence element. We will see this is due to the fact that the upper bound for
up-crossing inequality already exists.

Proof. For any n > 0, {X−k}−n≤−k≤−1 is a sub-martingale, so we have up-crossing inequality which
is the following (with our usual notation):

E[Uα,β,{−n,...,−1}] ≤
E[(X−1 − α)+ + α]

β − α
.
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Taking n → ∞ we see that the up-crossing is bounded by a constant (here it can be viewed as
down-crossing if we look at it backward in time), so Uα,β,{−N} < ∞ a.e.. This holds for any α, β, so
we a countable dense union:

P

 ⋃
α<β, α,β∈Q

Eα,β,−N < ∞

 = 1.

So limit exists. However, since E[X−1|F−n] ≥ X−n, so it does not diverge to infinity, but we can’t
prevent it to diverge to −∞ here.

Remark 2.1.5. Backward mtg’s can appears in another form, namely, σ-field decreases as n increases, and
there is a starting element. For example: Fn decreases, and E[Xn|Fn+1] ≥ Xn+1, this is also an backward
martingale, we only need to reindex the process: identify X1 to be Y−1 and let Y−n = Xn, and G−n = Fn,
then we have the backward mtg in the above form.

Here is another convergence result for backward mtg:

Proposition 2.1.11. Let (X−n)−n∈−N be a backward sub-martingale w.r.t. F−n’s, then the following con-
ditions are equivalent

1. X−n’s forms a uniformly integrable family.

2. X−n converges in L1 to X−∞.

3. {X−n : −n ∈ −N ∪ {−∞}} is a closed submartingale (with first and last element).

4. limn→∞ E[X−n] > −∞.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) follows similar proof for regular discrete maringale, we only need to
show the case from (4) to (1). So consider the following:∫

|X−n|>M
|X−n| =

∫
|X−n|>M

X+
−n +

∫
|X−n|>M

X−
−n

where

P [|X−n| ≥ M] ≤ P [|E[X−1|F−n]| ≥ M] ≤ P [|E[|X−1||F−n] ≥ M] ≤ E[|X−1|]
M

which converges to zero. Now we use the usual trick to get rid of X−
n because we don’t know much

about negative part of sub martingale:∫
|X−n|>M

X+
−n +

∫
|X−n|>M

X−
−n =

∫
|X−n|>M

X+
−n +

∫
|X−n|>M

X+
−n −

(∫
|X−n|>M

X+
−n −

∫
|X−n|>M

X−
−n

)
= 2

∫
|X−n|>M

X+
−n −

∫
|X−n|>M

X−n

≤ 2
∫
|X−n|>M

X+
−n +

∣∣∣∣∫|X−n|>M
X−1

∣∣∣∣
Now we want to bound the integrands, note X+

−n forms an sub-martingale by Jessen’s, so∫
|X−n|>M

X+
−n ≤

∫
|X−n|>M

X+
−1

and the second term obviously goes to zero when M → ∞, so the whole thing is uniformly inte-
grable.
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Now we are ready to state and prove the optional sampling theorem for right continous mtg’s,
even though it is likely we will only stick with mtg’s with continuous sample pathes.

Theorem 2.1.5. [Optional Sampling Theorem] Let (Xt)t∈R+ be an uniformly integrable sub-martingale with
right continuous sample pathes, and let τ ≤ σ be stopping times, then

E[Xσ|Fτ] ≥ Xτ.

Proof. The strategy is to break it down to familiar things, namely, discrete stopping times that we
worked with in previous chapter. So define τn and σn by the following

τn(ω) =

{
∞ τ(ω) = ∞
k

2n
k−1
2n ≤ τ(ω) < k

2n
; σn(ω) =

{
∞ τ(ω) = ∞
k

2n
k−1
2n ≤ σ(ω) < k

2n
.

Then as discussed previously, τn and σn are stopping times that takes countably infinitely many
values, and we still have τn ≤ σn. To have a discrete martingale that resembles the properties we
want, let Yn

k = X k
2n

, then Xτn = Y(n)
τn , same for Xσn . Furthermroe Y(n) is also uniformly integrable

sub-martingale. So by discrete optional sampling theorem, we have∫
A

Xτn ≤
∫

A
xσn ∀A ∈ Fτ. (2.2)

This is because τ ≤ τn for all n, so Fτ ⊂ Fτn for all n (recall the properties of σ-field associated
with stopping times).

Now observe, Fτn is a family of decreasing σ-algebra, and by discrete optional sampling theo-
rem,

E[Xτn |Fn−1] ≥ Xτn−1 ,

so here we have a backward martingale with starting element being Xτ1 . Also by discrete martingale
optional sampling theorem, we see that E[X0] ≤ E[Xτn ] for all n, so the expectation is bounded
below, so by previous thoerem, we get Xτn is uniformly integrable and converges to Xτ both in L1

and a.e. (right continuity). Taking limit n → ∞ of (2.2) we have∫
A

Xτ ≤
∫

A
Xσ,

since A ∈ Fτ is arbitrary, the proof is done.

The next lemma is immediate:

Lemma 2.1.2. Let Xt be a right continous sub-martingale and let τ ≤ σ be bounded (by some constant)
stopping time, then

E[Xσ|Fτ] ≥ Xτ.

The next corollary is immediate from the lemma:

Corollary 2.1.2. Let Xt be a right continous sub-martingale, then {Xτ∧t;Ft∧τ} is a sub-martinagle when
τ is an stopping time.
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2.2 Other Martingales

From now on, everything will be continous (Yeah!)
This section I will talk about local mtgs, semi-martingales and square integrable martingales.

The first two ”martingales” are not real martinagle, but are two wider classes of stochastic process
that will be helpful when doing stochastic integrations.

2.2.1 Local Martingales

We will be working with local martingales often:

Definition 2.2.1 (Local Martingale). An adapted stochastic process (Xt) w.r.t. {Ft} is a local martingale
if there is an increasing sequence of stopping times τn with τn ↑ ∞ that makes (Xt∧τn) a (true) martingale
for all n.

Remark 2.2.1. Here is one of the motivation of local martingales: often a process (Xt) almost satisfies the
condition of being a true martingale but false to be in L1. In that case, we can define certain kinds of stopping
times to bound it (localize it) so that it is in L1. Such stopping times are usually τn = inft{|Xt| ≥ n}, when
Xt is continuous.

Remark 2.2.2. The above definition is from ([KS12]), the definition for local martingale from ([LG16]) also
requres (Xt∧τn) to be uniformly integrable, but I don’t see a difference in reality. But gives us a hint that
uniformly integrability imposed on a local martingale does not neccessarily make it a true martingale.

Terminology: if (Xt) is a local martinagle such that (Xt∧τn) are true mtg’s for all n and τn ↑ ∞,
then we say {τn} reduces Xt.

The following lemma is a direct consequence of optional sampling.

Lemma 2.2.1. If (Xt) is a local martingale that can be redueced by {τn}, then it can also be reduced by
{τn ∧ σ} for any bounded stopping time σ (if we define local martingale according to ([LG16]), then we can
remove ”bounded” becuase of uniformly integrability).

Here are some properties of local mtg’s:

Theorem 2.2.1. 1. A nonnegative continuous local martingale with M0 ∈ L1 is a super martingale.

2. Suppose Mt is a continuous local martingale and Z ∈ L1 such that |Mt| ≤ Z for all t, then Mt is a
uniformly integrable martingale.

3. For any continuous local martingale (Mt), the following sequence of stopping times reduces (Mt):

τn = inf
t≥0

{|Mt| ≥ n} .

Proof. (1) Let (Mt) be a positive local martingale that starts with an L1 element, let τn reduce Mt
and let 0 ≤ s ≤ t, then by definition we have

E[Mt∧τn |Fs] = Xs∧τn

taking liminf on both side and apply Fatou’s lemma for conditional expectation we see

E[Mt|Fs] ≤ Xs.

Only problem remains is integrability, but this can be taken care of by setting s = 0.
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(2) ∫
|E[Xt∧τn |Fs]− Xs∧τn | = 0.

Taking n → ∞ and apply DCT to get ∫
|E[Xt|Fs]− Xs| = 0.

Uniformly integrability is straight forward.
(3) This is a direct consequence of (2) and the previous lemma: Mt∧τn is a local martingale

bounded by n.

2.2.2 Sqaure Integrable Martingales and Quadratic Variation

Definition 2.2.2. Let (Mt) be a (true) martingale, we say it is square integrable if Mt ∈ L2 for all t, and
call the collection of square integrable martingales M2, and call the collection of continous square integrable
martingales M2,c or Mc

2 which we use interchanagably.

Previously we’ve seen that a submartinagle can be written as sum of true martingale and an
increasing predictable process (Doob’s Decomposition) in the discrete setting. There is one in
continuous setting as well:

Theorem 2.2.2 (Doob-Meyer’s Decomposition). Let Xt,Ft be a continous non-negative submartinagle,
then there exists unique martingale Mt and an increasing process Zt starting at 0 such that Xt = Mt + Zt.
Uniqueness is up to indistinguishability, meaning almost every path are the same.

proof is long and tedious, omit.
By Doob-Meyer’s decompsoition we can have the following definition:

Definition 2.2.3. For all Mt ∈ Mc
2, there is a unique increasing process, we call ⟨M⟩t such that M2

t − ⟨M⟩t
is a martingale. We call ⟨M⟩t the quadratic variation of Mt.

Remark 2.2.3. The existance of such process is given by the fact M2
t is a submartinagle and Doob Meyer

decompsoition.

The definition for quadratic variation of local martingale is similar, the uniqueness and existnce
is proven in ([LG16]), we just state the corresponding theorem w/o proof:

Theorem 2.2.3. Let Mt be a local martiangle. Then there is an increasing process ⟨M⟩t such that M2
t −⟨M⟩t

is a local martingale, such process is unique up to indistinguishability.

The following theorem gives us insight on what exactly is quadratic variation:

Theorem 2.2.4. Let (Mt) be a local martingale and let Πn be partitions of [0, t] that gets finer as n gets
larger and ∥Πn∥ → 0 as n → ∞. Then

lim
n→∞ ∑

ti,ti−1∈Π

(
Mti − Mti−1

)2 → ⟨M⟩t in probability.

Proof can be found on both ([KS12]) and ([LG16]).

Proposition 2.2.1. suppose (Mt) is a local mtg and τ is a stopping time, then ⟨Mτ⟩t = ⟨M⟩t∧τ.
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Proposition 2.2.2. Let (Mt) be a local martingale and suppose ⟨M⟩t = 0 for t ∈ [0, T], then Mt = M0 on
[0, T].

Proof. Assume WLOG that M0 = 0.

E[M2
t ] = E[M2

t − ⟨M⟩t] = 0

this is enough to show Mt = 0.

The following theorem tells us quadratic variaiton is the right thing to look at for sqaure inte-
grable martingales:

Theorem 2.2.5. Let {Xt,Ft, 0 ≤ t < ∞} be a continuous stochastic process and let Πn’s be increasing
partitions of [0, t] with ∥Π∥ → 0 as n → ∞. Suppose that

lim
n→∞

V(p)
t ≜ lim

n→∞ ∑
ti,ti−1∈Π

∣∣Mti − Mti−1

∣∣p →in prob Lt

for some a.e. finite Lt. Then for all ϵ > 0, V(p+ϵ) → 0 and V(p−ϵ)
t → ∞ on the event {Lt > 0}.

Proof.

lim
n→∞

V(p+ϵ)
t = lim

n→∞ ∑
ti,ti−1∈Π

∣∣Mti − Mti−1

∣∣p+ϵ

≤ lim
n→∞

max
i

|Mti − Mti−1 |
ϵ ∑

ti,ti−1∈Π

∣∣Mti − Mti−1

∣∣p .

Continuity tells us maxi |Mti − Mti−1 | → 0 as n → ∞ a.e., and the other part of the sum converges
to Lt in probability, hence the whole thing converges to 0 in probability.

For the second part, sitll the same method, but notice that on the event Lt > 0, for large enough
n, we have maxi |Mti − Mti−1 |ϵ > 0.

lim
n→∞

V(p−ϵ)
t = lim

n→∞ ∑
ti,ti−1∈Π

∣∣Mti − Mti−1

∣∣p−ϵ

≥ lim
n→∞

(
max

i
|Mti − Mti−1 |

)−ϵ

∑
ti,ti−1∈Π

∣∣Mti − Mti−1

∣∣p → ∞.

The following theorem tells also when a local martingale is a true martingale bounded in L2:

Proposition 2.2.3. Let (Mt) be a local martingale with M0 ∈ L2, then the following are equivalent:

1. (Mt) is a true martingale bounded in L2.

2. E[⟨M⟩∞] < ∞.

Futhermore, if these properties holds, then M2
t − ⟨M⟩t is an uniformly integrable mtg.
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Proof. (1) ⇒ (2): Say M0 = 0. Suppose supt∈R+ E[M2
t ] < ∞ and Mt is a true martingale. Recall

the relation E[M2
t ] = E[⟨M⟩t] gives lim infn→∞ E[⟨M⟩t] ≥ E[lim inf⟨M⟩∞] = E[⟨M⟩∞] by Fatou’s

lemma.
(2) ⇒ (1): Let {τn}n be the increasing sequence of stopping times that reduces Mt, then

E[ sup
0≤s≤t

M2
t∧τn ] ≤ C2 sup

0≤s≤t
E[M2

t∧τn ] = C2 sup
0≤s≤t

E[⟨M⟩t∧τn ] ≤ CE⟨M⟩∞.

We may take n → ∞ first and take t → ∞ to see supt≥0 M2
t is bounded in L1 which dominates M2

t .
Another use of Jessen shows Mt is dominated by supt≥0 |Mt| ∈ L1, so by previous theorems, Mt is
a true mtg.

The following lemma is an immediate consequence of this Proposition

Lemma 2.2.2. Let (Mt) be a local martiangle with M0 ∈ L2, then the following are equivalent:

1. (Mt) is a true martingale and Mt ∈ L2 for all t ∈ R+.

2. E[⟨M⟩t] < ∞ for all t ≥ 0.

Remark 2.2.4. The above two theorems tells us that local martingales are real (or Rn) valued processes whose
quadratic variations are not square integrable.

Square Integrable Martiangles and Cross-Variation

Definition 2.2.4 (Cross-Variation). Let Mt, Nt be (local) Martiangles, cross variation is defined to be the
stochastic process, called ⟨M, N⟩ such that MtNt − ⟨N, M⟩t is a (local) Maringale.

Since there is a definition, we need to show such thing exists. To see this, see this, we write
NtMt as

NtMt =
1
2

(
(Nt + Mt)

2 − N2
t − M2

t

)
, (2.3)

and we notice that

NtMt −
1
2
(⟨N + M⟩t − ⟨N⟩t − ⟨M⟩t)

is a martinagle. So the cross-variation of Nt and Mt is defined to be above. It is also unique since
the quadratic variation of square integrable martignale is unique. It is of finite variation because
quadratic variation has finite variation. Also ⟨M, N⟩t = ⟨N.M⟩t, and it is bilinear.

Similarly, one can also define the cross variation to be

⟨M, M⟩t ≜
1
4
(⟨M + N⟩t − ⟨M − N⟩t) (2.4)

which is the same as the above definition.
Here are some properties of quadratic variation for local martiangles, which will also be true for

true martingales:

Proposition 2.2.4. Let Mt and Nt be two local martingales with first element being sqaure integrable, then

1. The mapping (Mt, Nt) 7→ ⟨Mt, Nt⟩ is bilear and symmetric.
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2. Let Πn be an increasing sequence of partitions of [0, t] and ∥Πm∥ → 0, then

lim
n→∞ ∑

ti,ti−1∈Πn

(
Mti − Mti−1

) (
Nti − Nti−1

)
→ ⟨N, M⟩t in probability. (2.5)

3. For all stopping time τ, the cross-variaiton of the stopped process equals to the stopped corss-variation:

⟨Mτ, Nτ⟩t = ⟨M, N⟩t∧τ,

where Mτ
t = Mτ∧t is called the stopped process.

4. Suppose Nn, Mt are two martingales (continuity is always assumed), then NtMt − ⟨n, M⟩t is also
uniformly integrable, and ⟨M, N⟩∞ exists as an a.e. limit of ⟨M, N⟩t and it is integrable which satisfy
the the following equation:

E[N∞M∞]− E[N0M0] = E[⟨N, M⟩∞].

Proof. The only thing that is not obvious is (2): Let’s denote ∆N
i = Nti − Nti−1 ; ∆M

i = Mti − Mti−1 , so
the summants of (2.5) is

∆N
i ∆M

i =
1
2

((
∆N

i + ∆M
i

)2
−
(

∆N
i

)2
−
(

∆M
i

)2
)

then the desired result is given by (2.3).

Notice that ⟨·, ·⟩ is somewhat like inner product, or it really wants to be an inner product. There
are some elements missing though: Cauchy-Schwartz, orthogonality and the underlying space. We
will take care of those in the next step.

Definition 2.2.5 (Orthogonal Processes). Two local martinagles M, N are said to be orthognoal to each
other if

⟨M, N⟩ ≡ 0 or ⟨M, N⟩t = 0∀t ≥ 0,

this can only happen when NtMt itself is an local martingale.

Cauchy-Schwartz:

Theorem 2.2.6 (Kunita-Watanabe). Let M, N be two conitnous local martingales, and H, K be two mea-
surable processes, then

∫ t

0
|Hs||Ks||d⟨N, M⟩s| ≤

(∫ t

0
|Hs|2d⟨N⟩s

) 1
2
(∫ t

0
|Ks|2d⟨M⟩s

) 1
2

for all t ≥ 0.

Remark 2.2.5. This is only interesting when all above are finite.

Proof. Notice that we only need to show this for H, K are simple functions, so only neet to show it
for H, K constant, which means we only needs to show it for H = K = 1, that is, to show∫ t

0
|d⟨M, N⟩s| ≤ (⟨M⟩t)

1
2 (⟨N⟩t)

1
2 .
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But the left hand side is nothing but the total variation of ⟨M, N⟩t =
1
2 (⟨N + M⟩t − ⟨N⟩t − ⟨M⟩t) =

1
4 (⟨M + N⟩t − ⟨M − N⟩t) (see (2.4)), which is the difference of two finite variation process. How-
ever, the total variation of this is nothing but the sum of those two finite variation process (see, for
example, [Fol99] Theorem 3.27). That is, we need to show

1
4

(∫ t

0
d⟨M + N⟩s +

∫ t

0
d⟨M − N⟩s

)
=

1
4
(⟨M + N⟩t + ⟨M − N⟩t) ≤ (⟨M⟩t)

1
2 (⟨N⟩t)

1
2

But this is obvious by the bilinear property of cross variation:

⟨M + N⟩t + ⟨M − N⟩t = 2⟨M⟩t + 2⟨N⟩t ≤ 4 (⟨M⟩t)
1
2 (⟨N⟩t)

1
2 .

And we note that if Hs ≡ α and Ks ≡ β, then it stil holds.
Now the only sketchy part of this proof is that the step function might not start at zero, e.g.

H = 1[τ,σ]. But this case can be taken care of by starting the process N and M at τ.

Remark 2.2.6. From the above proof, we see that ⟨·, ·⟩ has Cauchy-Schwartz inequality. So if there is an
space that is closed in some norm induced by ⟨·, ·⟩, then it would be a Hilbert space when paired with cross
variation as the inner product. Now we take care of that part.

Definition 2.2.6 (The Hilbert Space). On a filtered probability space, we define H to be the space of all
L2 bounded continuous martingales that start at zero (M0 = 0), with norm being

√
E[⟨M⟩∞] and inner

product being E⟨M, N⟩∞.

Proposition 2.2.5. The above definition makes sense.

Proof. We have seen previously that an L2 bounded martingale, then ⟨M⟩∞ exists and is integrable
(Lp inequality, monotone). ∥·∥H make sense because if ∥M∥2

H = E[⟨M⟩∞] = 0, then ⟨M⟩t = 0 for
all t ≥ 0 (increasing and nonnegative), so Mt = 0 for all t ≥ 0, so ∥·∥H is indeed a norm. The inner
product is also indeed an inner product thanks to Kunita-Watanabe Inequality.

Theorem 2.2.7.
(

H,
√

E⟨·, ·⟩
)

defines an Hilbert space.

Proof. Here, we need to show every Cauchy sequence in H converges to a L2 bounded continuous
martinagle (unifromly integrable).

Let {Mn} ⊂ H be a cauchy sequence, that is,

lim
n,m→∞

E (⟨Mn − Mm⟩∞) = 0

But we also have for all t ≥ 0:

E (⟨Mn − Mm⟩∞) ≥ sup
t∈R+

E[(Mn
t − Mm

t )
2] ≥ 1

C
E

[
sup
t≥0

(Mn
t − Mm

t )
2

]
→ 0 as n, m → ∞. (2.6)

So there is at least an L2(Ω, P) limit of Mt for each t, call it Mt. Now we would need to show Mt is
pathwise a.e. continuous and it is a Martingale (it is already square integrable).

First, it is a square integrable martingale: since it is L2 convergent, then by Jessen, it is L1

convergent. Let A ∈ Fs, then∫
A

Ms = lim
∫

A
Mn

s = lim
∫

A
E[Mt|Fs] =

∫
A

E[Mt|Fs].
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So Mt is a martinagle with no problem. Now, continuity is harder to get since Mt is a L2(L1)
limit of continous mtg, to get continuity, want it to be a uniform limit of a sequence of continous
martingales. However, (2.6) tells us something very close to that: M· is an uniform limit of Mn

·
in probability, so there is a subsequence of Mn

· , stil call it Mn
· that converges to M· for almost all

ω ∈ Ω, so we know M· is continuous. This also insures ⟨M⟩∞ exists as limit of ⟨Mn⟩∞, which is
also in L1.

The following Proposition is an immediate consequence of the previous Theorem

Proposition 2.2.6. With above settings, H2
T ≜ {Mt, 0 ≤ t ≤ T; Mt is square integrable martingale} is a

Hilbert space with norm defined by ∥·∥2
H2

T
= E⟨·⟩T.

Remark 2.2.7. This fact will be important in the development of Stochastic Integration.

Continuous Semi-Martingales

This is the last ”other” Martingales here:

Definition 2.2.7 (Semi-Martingale). We say (Xt) is a continuous semi-martinagle if it can be decomposed
into

Xt = Mt + At

where (Mt) is a continuous local martingale and At is an adapted process with finite variation.

One might have guessed that it also have a quadratic variation. By the approximation given by
(2.5), we see (at least intuitively) the finite variation process does not contribute anything to the
quadratic variation approximation (in probability).

Definition 2.2.8. Let Xt = Mt + At and Yt = Nt + Zt be two semi-martingales where M, N are continous
local martingales and A, Z be two finite variation process. We define the quadratic variation of X to be

⟨X⟩t = ⟨M⟩t

and the cross-variation between X and Y to be

⟨X, Y⟩t = ⟨M, N⟩t .

The next theorem tells us why this makes sense:

Theorem 2.2.8. Let Πn = {ti}i∈I be a partition of [0, t] where I is a finite set, where ∥Πn∥ → 0 as n → ∞.
Let Xt = Mt + At be a continous semi-maringale where Mt and At are continous local martingale and
continuous finite variation process repsectively, then

lim
n→∞ ∑

ti,ti−1∈Πn

(
Xti − Xti−1

)2 → ⟨X⟩t = ⟨M⟩t in probability.

Proof. The inuition is from Theorem 35, let’s calculate it directly:

∑
ti,ti−1∈Πn

(
Xti − Xti−1

)2
= ∑

ti,ti−1∈Πn

(
Mti − Mti−1 + Ati − Ati−1

)2

= ∑
ti,ti−1∈Πn

(
Mti − Mti−1

)2
+ ∑

ti,ti−1∈Πn

(
Ati − Ati−1

)2

+ ∑
ti,ti−1∈Πn

2
(

Mti − Mti−1

) (
Ati − Ati−1

)
.
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The first sum goes to ⟨M⟩t with no problem, the second sum goes to zero by Theorem 35. Now
consider the last summants

∑
ti,ti−1∈Πn

2
(

Mti − Mti−1

) (
Ati − Ati−1

)
= max

ti,ti−1∈Πn
2
∣∣Mti − Mti−1

∣∣ ∑
ti,ti−1∈Πn

∣∣Ati − Ati−1

∣∣
which goes to zero for almost all ω by, again, Theorem (35).

2.3 Brownian Motion

Here, we first look at some properties of a more general Gaussian process, and then build Brownian
motion out of that. Then look at some path properties of Brownian motions.

2.3.1 Gaussian Processes

A preview of this section

1. Elementary facts about Gaussian random variables.

2. The space that Gaussian random variable generates.

3. Gaussian white noise.

Gaussian Random Variables

Let’s recall some facts about Gaussian random variables.

Definition 2.3.1. We say X ∼ N (m, σ2) on the real line if X has density function

fX(x) =
1√

2πσ2
exp(− (x − m)2

σ2 )

For Rn, the definition is similar: We say X ∼ N (m, Σ), where Σ is a positive definite matrix, if the
measure induced by X, call it µ, is absolutely continuous with respect to λn, the n-dim lebesgues measure
and

dµ

dλn (x) =
1

(2π det(Σ))
exp

(
−1

2
⟨x − m, Σ−1(x − m)⟩

)
we call Σ the covariance matrix of (Xi)1≤i≤n where the entries are (Σ)i,j = Cov(Xi, Xj)

The moment generating function and the characteristic functions for the centered (mean zero)
Gaussian measures (random variables), since that’s what we are interested in, are the following:

Proposition 2.3.1. Let µ be a Guassian measure with mean m and variance σ2, then its Fourier transform
is

µ̂(ξ) = exp
(
−1

2
(σξ)2

)
; E[eλx] = exp

(
λ2σ2/2

)
.
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Proof. Let λ ∈ C be a complex number and consider the following

1√
2πσ2

∫
R

eλx− 1
2

x2

σ2 dx =
1√

2πσ2

∫
R

e
1
2 σ2λ2

e−
1
2 σ2λ2+λx− 1

2
x2

σ2 dx

= exp(
1
2

λ2σ2)
1√

2πσ2

∫
R

e−
(x−σλ)2

σ2

= exp
(

1
2

λ2σ

)
then let λ be either ξ or λ ∈ R gives us desired result

Definition 2.3.2 (Jointly Guassian). Suppose X, Y are Guassian random variables, we say X, Y are jointly
Guassian random variables if αX + βY are Guassian random variables for all α, β ∈ R. Similar definition
for multiple gaussian random variables.

Following prop is useful

Proposition 2.3.2. Let X ∼ N (µ1, σ2
1 ) adn Y ∼ N (µ2, σ2

2 ), then X + y ∼ N (µ1 + µ2, σ2
1 + σ2

2 ).

Proof is easy algebra, omit.
Here is an interesting fact about jointly Guassian random variables:

Proposition 2.3.3. Let (X1, ..., Xn) be a Guassian random variable (or Gaussian vector) in Rn, then {Xi}1≤i≤n
are independent if and only if the covariance matrix is diagonal.

Proof. If part is siimple, we only show the only if part: suppose Σ, the covariance matrix, is diagonal,
say its diagonal elements are λ2

i ’s, and assume WLOG that E[Xi] = 0 for all i, then its density is

1√
2π det(Σ)

exp
(
−1

2
x · Σ−1x

)
=

1√
2π det(Σ)

exp

(
−1

2 ∑
1≤i≤n

x2
i

λ2
i

)

=
1√

2π ∏1≤i≤n λ2
i

∏
1≤i≤n

exp

(
−1

2
x2

i
λ2

i

)

hence independent.

Gaussian vectors forms a closed space in L2:

Theorem 2.3.1. 1. Let {Xn}n be a sequence of Gaussian vectors such that E[Xn] = µn and Cov(Xn) =
Σn where µn → µ and Σn → Σ in matrix norm (∑1≤i,j≤n

∣∣Σi,j
∣∣), and Xn converges in L2 to some X,

then X ∼ N (µ, Σ).

2. Same setting as (1) and assume L2 convergence, then we have Lp convergence for all 1 ≤ p < ∞.

Proof. (1) is just simple application of Levy’s continuity theorem.
(2) Let’s work with 1-dimensional case, higher dimensions are similar. Since µn and σn are all

bounded uniformly by some number, we can take advantage of the fact that all moments exists for
normal random varibales, and the fact that higher moments of Guassian random variables depens
completely on the first and second moments. So E|Xn|p → E|X|p, then by Proposition 18, we have
convergesn in Lp.

There is a one-to-one relation between Guassian measures in Rn and nonnegative symmetric
matricies in GL(Rn):
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Proposition 2.3.4. Suppose Σ is a symmetric nonnegative matrix, then there is a Gaussian measure with
mean 0 and covariance matrix Σ.

We omit the proof here, but the idea of the proof is to find an eigen-basis of Σ, call then {ei}1≤i≤n,
and pair them up with i.i.d standard Guassian random variables.

Remark 2.3.1. The above proposition hold in more general settings, e.g. in a Hilbert space, one can show there
is a one-to-one correspondence between the family of centered Gaussian process and the family of nonnegative
symmetric trace oprators. For more detail, see ([DPZ14]).

Gaussian Process and Space

Definition 2.3.3. 1. The (centered) Gaussian space is a subspace of L2 that contains only the Gaussian
random variables.

2. A (centered) Gaussian process is a process (Xt)t∈T where T is any index set, such that any finite linear
combination of elements in the process gives a (centered) gaussian random variable. In other words, the
family is (finitely) jointly Guassian.

The next proposition is immediate from Thoerem 39:

Proposition 2.3.5. Let (Xt)t∈T be a Gaussian process, then the linear span of elements of (Xt)t∈T in L2 is
a Guassian space, which is called Guassian space generated by (Xt)t∈T.

Remark 2.3.2. Note that a centered Gaussian space is still a Hilbert space with L2 inner product.

Gaussian White Noise

Definition 2.3.4 (Gaussian White Noise). Let (E,B(E)) be a measurable space, and let µ be a σ finite
measure on it. A Gaussian white noise with intensity µ is an isometry from L2(E, µ) to a centered Gaussian
space.

Remark 2.3.3. If Ẇ is a Guassian white noise, and f ∈ L2(E, µ) (we drop the σ-field here), then

E

∣∣∣Ẇ( f )2
∣∣∣ = ∫

E
| f |2dµ

and it also preserves inner products:

E
[
Ẇ( f )Ẇ(g)

]
=
∫

E
f gdµ.

In particular, it also works with indicator functions:

E
[
Ẇ(1A)Ẇ(1B)

]
= µ(A ∩ B).

Note that if fn → f in L2(µ) and fn’s are simple functions, then Ẇ( fn) → Ẇ( f ) in L2(Ω, P).

The following theorem shows existance of White noise:

Theorem 2.3.2. Let (E, E) be a fixed seperable measurable space, then for any σ finite µ, there is a white
noise Ẇ with intensity µ.

From the proof, we will see that the underlying space does not have to be L2(E, µ) if we do not
restrict the intensity to be a measure, it works for any Hilbert space.
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Proof. Let {en}n∈N be the orthornormal basis of L2(E, µ), and let {Xn}n∈N be i.i.d standard normal
random variables with a common probability space (Ω,F , P), and consider the map

f 7→ ∑
n∈N

⟨ f , fn⟩Xn

is a gaussian white noise.

Finally, Gaussian white noises have ”quadratic variation”:

Proposition 2.3.6. Let (E, E , µ) be a seperable measure space where µ is σ finite and let Ẇ be an gaussian
white noise with intensity µ. For A ⊂ E and A =

⋃
1≤i≤n An

i where {An
i }1≤i≤n is disjoint for all n, and

lim
n→∞

max
1≤i≤n

µ(An
i ) = 0,

Then

∑
1≤i≤n

Ẇ(An
i )

2 → µ(A) in L2 as n → ∞.

Proof. Let’s try direct computation:

E

( ∑
1≤i≤n

Ẇ(An
i )

2 − µ(A)

)2
 = E

( ∑
1≤i≤n

Ẇ(An
i )

2 − µ(An
i )

)2


= ∑
1≤i,j≤n

E
[(

Ẇ(An
i )

2 − µ(An
i )
) (

Ẇ(An
j )

2 − µ(An
j )
)]

We let Bn
i =

(
Ẇ(An

i )
2 − µ(An

i )
)

and observe that for a fixed n, Bn
i ⊥ Bn

i , and E[Bn
i ] = 0, so

E[Bn
i Bn

j ] = 0 for i ̸= j. So only (i, i) term remains in the above sum:

E

( ∑
1≤i≤n

Ẇ(An
i )

2 − µ(A)

)2
 = ∑

1≤i≤n
E

[(
Ẇ(An

i )
2 − µ(An

i )
)2
]

computing each term:

E

[(
Ẇ(An

i )
2 − µ(An

i )
)2
]
= E

[
Ẇ(An

i )
4
]
− 2E

[
Ẇ(An

i )
2µ(An

i )
]
+ µ(An

i )
2

= 3µ(An
i )

2 − µ(An
i )

2 = 2µ(An
i )

2

which we see goes to zero in the spirit of theorem 35.

At this point, one can go off of stochastic calculus and dive right into Martinagle measures and
Walsh’s theory on stochastic PDE just as in ([DKM+

09]), but we are going to develop Brownian
motion from here.
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2.3.2 Construction of Brownian Motion

We first define Brownian Motion and then show it exists.

Definition 2.3.5 (Brownian Motion/Wiener Process). A Brownian motion/Wiener process is a stochastic
process, denoted by (Wt) such that

1. W0 = 0 a.e.

2. W·(ω) is a continous function for almost every ω.

3. Wt has independent increments.

4. Wt − Ws ∼ N (0, t − s) for all 0 ≤ s ≤ t < ∞.

We now build Wiener process step by step (honestly, there are only two steps). Also, I will use
wiener process and Brownian motion interchanagably.

Definition 2.3.6 (Pre-Brownian motion). Let Ẇ be a Gaussian process defined on R+ with intensity being
the ususal lebesgues measure, the process Bt defiend by

Bt = Ẇ([0, t])

is called a pre-Brownian motion.

We see that E[BtBs] = t ∧ s.
We can see easily that a pre-Brownian motion satisfies (1),(3),(4) of the definiton of Brownian

motion, the following theorem tells us exactly that:

Theorem 2.3.3. Let Xt be a real valued stochastic process, then the followings are equivalent

1. (Xt) is a pre-Brownian Motion.

2. (Xt) is a centered Gaussian process with covariance K(t, s) = t ∧ s.

3. X0 = 0 a.e. and (Xt) has independent increment and Xt − Xs ∼ N (0, t − s) for all 0 ≤ s ≤ t < ∞.

Proof. (1) ⇒ (2): this is obvious.
(2) ⇒ (3): let 0u ≤ s ≤ t < ∞ and let γ > 0, then

E[Xu(Xt − Xs)] = E[XuXt] = E[XuXs] = u ∧ t − u ∧ s = u − u = 0

being jointly gaussian we see Xu ⊥ (Xt − Xs) for all u ≤ s. More generally, σ(Xu; 0 ≤ u ≤ s) ⊥
σ(Xt − Xs; s ≤ t < ∞). Now, only thing we need to do is to calculate the variance of Xt − Xs where
s ≤ t, since we know it is Guassian:

E[(Xt − Xs)
2] = E[X2

t ]− 2E[XtXs] + E[X2
s ] = t − 2t ∧ s − s = t − s.

(3) ⇒ (1): Here we would like to construct a Guassian white noise with intensity λ where λ is
1-dim lebesgues measure. So we make an guess and see if it is a Gaussian white noise:

Ẇ(λ1[s,t]) ≜ λ (Bt − Bs)

which maps simple functions to centered gussian random variables and we see this is an isometry
defined on the set of simple functions to a subset of centered gaussian random variables. Since
simple functions are dense in L2, we can extend it to the whole space of L2(R+) and use the fact that
Gaussian random variables are closed in L2(P), we see Ẇ is a white noise and Bt = Ẇ([0, t]).
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Remark 2.3.4. So all of the three above can be used as the definition of pre-Brownian motion now.

Now, only continuity is missing, but the following Kolmogorov’s Continuity Criterion tells us
when a process will be very close to continuous for almost every sample path. But before that,
there are two more concpets we need to know:

Definition 2.3.7 (indistinguishability). Let Xt, Yt be two stochasti processes, we say they are indistinguish-
able if

P[Xt ̸= Yt; ∀t ≥ 0] = 0.

That is, for almost all ω, X·(ω) and Y·(ω) are the same thing. Or, treating X : Ω → {measurable functions},
and same for Y, then X = Y a.e.

Definition 2.3.8 (Modification/Version). Let Xt, Yt be two stochastic processes, then we say Y is a version
of X, or Y is a modification of X if

P[Xt = Yt] = 1 ∀t ≥ 0.

Remark 2.3.5. Clearly, indistinguishability is stronger than modification. In particular, X has a continuous
versio,

Theorem 2.3.4 (Kolmogorov’s Continuity Theorem). Let (Xt) be a stochastic process on a complete
seperable metric space, and suppose there is α, β > 0 such that fro all s, t ∈ [0, T]

E|Xt − Xs|δ ≤ C|t − s|1+ϵ

then there is a version of X that is Holder continuous on [0, T] for all exponent α < δ
ϵ .

Proof. Assume WLOG that T = 1.
The idea of the proof: we want deduce pathwise property from general infomation (such as

expectations here), then only thing that can help us is Borel-Cantelli here. It is also hard to construct
a continous process from scratch, but if Xt is continuous in a weaker sense, say continous or
uniformly continous on a dense set, then we can do a natural extension to the whole set and create
a continous process. The natrual dense set of the choice is the set of rational numbers. However,
from the condition that is given, we would like to have some control over the distances, and the
set of rational numbers does not give us that. The next choice would be dyadic rationals, that is,
{ a

2k : a ∈ N}, or I would like to call them the ”rational binary numbers”. It is a good choice because
we can decompose them into layers:

Let Dn = { k
2n ; 0 ≤ k ≤ 2n}, and let

D =
⋃

n≥1

Dn

then D is the collection of ”rational binary numbers” between 0 and 1, and in each layer, we have
some control over the distances. With the help of the elementary fact that binary representation of
a rational number is unique, we are ready to prove the theorem.

Fix n ≥ 1, and let 0 ≤ k ≤ 2n, then by Chebyshev we have

P

[∣∣∣∣X( k
2n

)
− X

(
k − 1

2n

)∣∣∣∣ > β

]
≤

E[
∣∣∣X ( k

2n

)
− X

(
k−1
2n

)∣∣∣δ]
βδ

≤ 2−(1+ϵ)β−δ.
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Since we want to use Borel-Cantelli, we want to vary β w.r.t. n so we can sum things up. So the
natrual choice for β for a fixed n is β = 2−γn, plug it in we see

P

[∣∣∣∣X( k
2n

)
− X

(
k − 1

2n

)∣∣∣∣ > 2−γn
]
≤ 2−n(1+ϵ−γδ)

which implies

P

[
max

1≤k≤2n

∣∣∣∣X( k
2n

)
− X

(
k − 1

2n

)∣∣∣∣ > 2−γn
]
≤ 2−n(ϵ−γδ)

Here we want the exponent on the right hand side to be strictly greater than zero, so choose γ < ϵ
δ ,

and notice that
∞

∑
n=1

P

[
max

1≤k≤2n

∣∣∣∣X( k
2n

)
− X

(
k − 1

2n

)∣∣∣∣ > 2−γn
]
≤ ∑

n≥1

(
2ϵ−γδ

)n
< ∞.

Now, Borel-Cantelli tells us that there is Ω̃ ⊂ Ω with P
[
Ω̃
]
= 1, such that for all ω ∈ Ω̃, there is

N(ω) ≥ 1 such that for all n ≥ N(ω), the path associated with ω has the property

max
1≤k≤2n

∣∣∣∣X( k
2n

)
− X

(
k − 1

2n

)∣∣∣∣ ≤ 2−γn

(for lack of space to put (ω)). This looks like uniform continuous on D, let’s see if it is. Suppose
s, t ∈ D where s ≤ t and suppose 2−n−1 ≤ |t − s| < 2−n, then s, t ∈ Dm for some m > n, so
|t− s| ≤ 2m−n2−m, let m be the smallest such number, then |t− s| ≥ 2−m, hence 2−m ≤ |t− s| < 2−n,
so

|t − s| =
m

∑
=n+1

ej2−j ej ∈ {0, 1}

and such representation is unique (binary). So we do the decomposition

|X(t)− X(s)| ≤
m−1

∑
j=n+1

∣∣∣∣∣X(s +
j+1

∑
i=n+1

ei2−i)− X(s +
j

∑
i=n+1

ei2−i)

∣∣∣∣∣
≤

∞

∑
n+1

2−γj

= 2−γ(n+1)
∞

∑
j=0

2−γj

=
2−γ(n+1)

1 − 2−γ
≤ |t − s|γ

1 − 2−γ
.

So X is Holder continuous with exponent γ on D, pathwise. So we can extend it naturally to
[0, 1]: if t ∈ D, then X̃t = Xt, if t ∈ [0, 1]\D, then choose {tn} ⊂ D such that tn → t, and let
X̃t = limn→∞ Xtn (pointwise limit). Then X̃ is a modification of X. To see this on t /∈ D, we have
Xtn → X̃t a.e. but it also converges to Xt in probability, so the two limits actually equal.

Theorem 2.3.5. Pre-Brownian motion has a continuous modification, which is Holder continuous with
exponent strictly less than one half.
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Proof. Let X be a standard normal random variable, then

E |B(t)− B(s)|p = E[

(√
|t − s|X

)p
] = |t − s|

p
2 E[Xp].

we take p > 2.

Now the following thoerem becomes immediate.

Theorem 2.3.6. Brownian Motion/Wiener Process exists.

Remark 2.3.6. Since Brownian motions are versions of pre-Brownian motions, so they inherit all distribu-
tional properties pre-Brownian motions have. In particular, we can view Brownian motion as a continous
Gaussian process.

It is nice that Brownian motion is conitnous, and it is also fortunate (or unfortunate) that it is
nowhere differentiable, in fact, it is no where p-Holder continous for p > 1

2 :

Theorem 2.3.7. Let B be a one-dim standard brownian motion and let p > 1
2 . Then B is nowhere Holder

continous of order p, meaning for almost all ω ∈ Ω, B·(ω) is not Holder continous at any point, and hence
nowhere differentiable.

Proof. Suppose by contradiction that Bt is Holder countinuous on, say (WLOG) the unit interval,
with strictly positive probability, then we’d have

P

[
sup

x ̸=y,x,y∈[0,1]

|Bx − By|
|x − y|p < C

]
≥ α > 0

Now, let’s derive a contradiction: let |x − y| = h, so Bs − By =d Bh, so we can only look at the case
of Holder continous at the point zero. By the scaling property of BM, we have

P [|Bh| ≤ Chp] = P
[
|B1| ≤ Chp− 1

2

]
≥ α

This should hold for all h > 0, however, if we take h ↓ 0, we’d see a contradiction.

Wiener Measures: ”second” construction of Brownian motion

Suppose we are wokring with 1-dim process, suppose {Ai}1≤i≤n ⊂ B(R), then we call the following
set Cylindrical:

C =
{

ω(·) ∈ C(R+, R) : ω(ti) ∈ Ai for all Ai
}

(2.7)

Given a process and a Cylindrical set as above, then the distribution of the process on the Cylindri-
cal sets is called the finite dimensional distributions. Here we can calculate the finite dimensional
distributions for Brownian motions directly:

Lemma 2.3.1. Let Bt be a one dimensional Brownian motion, and let 0 = t0 < t1 < t2 < · · · < tn, then the
finite dimensional distribution of Brownian motion has the following density function:

P [Bt1 ∈ dx1, . . . , Btn ∈ dxn] =
1√

(2π)n
√

t1(t2 − t1) . . . (tn − tn−1)
exp

(
n

∑
i=1

(xi − xi−1)
2

2(ti − ti−1)

)
(2.8)
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Proof. Note that (2.8) is fairly similar to the distribution of (Bt1 , Bt2 − Bt1 , . . . , Btn−Btn−1
), which had

the density

P
[
Bt1 ∈ dx1, . . . , Btn − Btn−1 ∈ dxn

]
=

1√
(2π)n

√
t1(t2 − t1) . . . (tn − tn−1)

exp

(
n

∑
i=1

(xi)
2

2(ti − ti−1)

)

then let yi = ∑i
j=1 xi would do the trick, but (2.8) is very intuitive itself.

We recall the λ − π theorem (or π − λ) and the monotone class theorem from the very first page
of this ntoes: if two measures agrees on a generating algebra (collection of subset that is closed
under intersection), then two measures agree on the whole σ field. In other words, a measure is
Characterized by its behavior on such an algebra. We note that that the σ field generated by the
family of Cylindrical sets is the σ field for which the coordinate mapping:

C(R+, R) ∋ ω → ω(t) ∈ R

is continous.
The above means the law of Brownian motion is unique! Say we call it W (Wiener measure)

then the underlying probability space becomes (Ω,F , W) where F is the σ-field generated by the
Cylindrical sets, then brownian motion is just the coordinate mapping process: Xt(ω) = ω(t). We
call this space the canonical space for Brownian motion.

Remark 2.3.7. The above discussion can be treated as a second construction of Brownian motion, where we
define a density function like 2.8 on the space of continous functions on the positive part of the real line.
Then we do not have to show continuity, and such probability measure (Wiener measure) would give us the
distributional proerties of pre-Brownian motion.

2.3.3 Sample Path Properties of Brownian Motions

For now, let the filtration of Brownian motions be

Ft = σ({Bs : s ≤ t})

so the filtration is not neccessarily right continous but left continous, and let

Ft+ =
⋂
s>t

Fs.

Here we state Blumenthal’s zero one law

Theorem 2.3.8 (Blumenthal’s). Let A ∈ F0+, then P[A] ∈ {0, 1}.

Proof. The idea is the same as of the proof for Kolmogorov’s zero one law (even though we derived
it from Levy’s zero one law), where we want to shwo F0+ is independent to itself.

The intuition is the following:

F0+ =
⋂
t>0

Ft =
⋂
t>0

σ(Bτ : τ ≤ t) ⊥ σ(Bt − Bτ : t ≥ τ > 0) ∀t > 0

but since X0 = limτ→0 Xτ, indicates that σ(Bt − Bτ; t ≥ τ > 0) = σ(Bt − B0; t ≥ 0) = σ(Bt; t ≥ 0) ⊃
F0+ (this is heuristic). Now we formalize this idea:
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Let 0 < t1 < · · · < tn and and let f : Rn → R be a bounded continous function, consider the
following

E[1A f (Bt1 , . . . , Btn)] = lim
ϵ↓0

E[1A f (Bt1 − Bϵ, . . . , Btn − Bϵ)] = lim
ϵ↓0

P[A]E[ f (Bt1 − Bϵ, . . . , Btn − Bϵ)] = P[A]E[1A f (Bt1 , . . . , Btn)]

where the first and last equalities are due to continuity (actually, right continuity). So F0+ ⊥
σ(Bt1 , . . . , Btn) for all finitely many ti’s that are strictly positive ti’s, but B0 is pointwise limit, so
F0+ ⊥ σ(Bt : t ≥ 0) ⊃ F0+.

using exactly the above proof with B0 replaced by Bs for any s ≥ 0, we can prove the following
theorem:

Theorem 2.3.9. With above setting, we have Fs+ ⊥ σ(Bt; t ≥ s).

More generally, in the above proof, we only used right continuity and independent increments,
so we can use the exact same proof again for the following more general theorem:

Theorem 2.3.10. Let Xt be a stochastic process with independent increments and right continous, then
Fs+ ⊥ σ(Bt; t ≥ s) for Ft = σ(Xs; s ≤ t).

Now let’s look at the bahavior of Brownian motion near t = 0+:

Theorem 2.3.11. Brownian motion changes sign infinitely many times near zero. That is, there is a sequence
tn ↓ 0 such that P [#{Btn > 0; n ∈ N} = ∞] = 1 and P [#{Btn < 0; n ∈ N} = ∞] = 1, where # is the
counting measure.

Proof. Let’s define

A = {#{Btn > 0; n ∈ N} = ∞} =
⋂

n≥1

⋃
m≥n

{Btm > 0} =
⋂

n≥N

⋃
m≥n

{Btm > 0} ∈ FtN

for arbitrarily large N, so A ∈ ⋂tn Ftn = F0+, so by the zero-one law, P[A] ∈ {0, 1}. Note we note⋂
n≥k

⋃
m≥n

{Btm > 0}

is a monotone decreasing sequence of set so

P

[⋂
n≥1

⋃
m≥n

{Btm > 0}
]
= lim

n→∞
P

[ ⋃
m≥n

{Btm} ≥ 0

]
≥ 1

2
.

so P[A] = 1. Same for the other one.

Theorem 2.3.12. Brownian motion is a Martinagle.

Proof. This is immediate from one of the remarks before: process with mean zero and independent
increments are martingales. But here is a quick computation

E[Bt − Bs|Fs] = 0.

Before we talk about other path properties, let’s look at some distributional properties of Brow-
nian motion, since they can help with the study of path properties. But first, we need a Strong Law
of Large Numbers for Brownian motion
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Theorem 2.3.13 (SLLN BM). Let Bt be a Bronwian motion, then

lim
n→∞

Bt

t
= 0.

Proof. Decompose the fraction as the following

lim
t→∞

Bt

t
= lim

t→∞

B⌊t⌋ + Bt − B⌊t⌋
t

= lim
t→∞

1
t

( ⌊t⌋

∑
n=1

Bn − Bn−1

)
+ lim

t→∞

Bt − B⌊t⌋
t

The first limit converges to zero with no problem (usual SLLN), we have to take care of the second
limit. Here again we need to show pointwise convergence with only distributional infomation, so it
is natural to use Borel-Cantelli. Note that we are only concered when the integer part of t increases,
so let tn ∈ [n, n + 1) and let {ϵn} be a sequence of numbers tends to zero, and the values are to be
determined, by Doob’s Lp inequality we see

∞

∑
n=1

P

[
max

t∈[n,n+1)
|Bt − Bn| ≥ ϵnn

]
≤ Cp ∑

n∈N

1
ϵ2

nn2

so let ϵn = n− 1
100 , then the above sum is finite, so by Borel-Cantelli, we see the last term converges

to zero.

Theorem 2.3.14. Let {Bt}t be a Wiener process (Brownian motion), then the follows are also Brownian
motions:

1. For all α > 0, 1
α Bα2t is also a Brownian motion.

2. Define Xt in the following way, then it is a Bronwian motion

Xt =

{
tB 1

t
t > 0

0 t = 0.

3. −Bt.

Proof. (1) 1
α Bα2t is continous, now we check if it satisfies the distributions:

E[
1
α

Bα2t
1
α

Bα2s] =
1
α2 α2 (t ∧ s) = s ∧ t.

where the difference is obvious Gaussian.
(2) By the SLLN we see Xt is continous at zero, and

E[(tB1
t
)2] = t2 1

t
= t.

(3) is obvious.

Remark 2.3.8. Here we observe that (2) implies SLLN since if Xt is a Brownian motion, then Xt continous
at zero, but

lim
t↓0

B 1
t

1
t

= lim
s→∞

Bs

s
= 0.
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An immediate and important result from (3) is that Bronwian motion is unbounded a.e.

Theorem 2.3.15. Let Ta = inft{|Bt| = a}, then P[τa < ∞] = 1.

Proof. From (3) we see that

P [Ta < ∞] = P[ sup
0≤t<∞

|Bt| > a]

= P

[ ⋃
1≤n<∞

sup
t≤n

{|Bt| ≥ a}
]

= lim
n→∞

P[ sup
0≤t≤n

|Bt| ≥ a]

≥ lim
n→∞

P[|Bn| ≥ a]

= lim
n→∞

P
[√

n|B1| ≥ a
]
= lim

n→∞
P

[
|B1| ≥

a√
n

]
= 1

where the last equality is achieved by continuity of measrues.

Here is a similar theorem but says the hitting time of brownian motion at any level is finite:

Theorem 2.3.16. Let τa = inft≥0{Bt = a}, then τa < ∞ a.e.

Proof. Here it is enough to prove it for a > 0, and since Brownian motion changes sign infinite
many times near the origin, we have

lim
ϵ↓0

P

[
sup

0≤t≤1
Bt > ϵ

]
= 1

By scaling property we have

lim
ϵ↓0

P

[
sup

0≤t≤1
Bt > ϵ

]
= lim

ϵ↓0
P

[
sup

0≤t≤1

1
ϵ

Bt > 1

]
= lim

ϵ↓0
P

 sup
0≤t≤ 1

ϵ2

1
ϵ

Bϵ2t ≥ 1

 = lim
ϵ↓0

P

 sup
0≤t≤ 1

ϵ2

Bt ≥ 1


the above expression still equals to 1. So here we showed τ1 < ∞ a.e. For other numbers, we can
use a different scaling.

The following properties of Brownian motions are entirely trivial from above theorems:

Corollary 2.3.1. 1. Brownian motion is nowhere monotone.

2. Has quadratic variation ⟨B⟩t = t.

3. Has infinite variation on any nontrivial interval.

Strong Markov Property

We’ve talked about (simple) Markov property very briefly in the discrete martingale section, here
is the definition of Strong Markov Property:
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Theorem 2.3.17 (Strong Markov for Brownian Motion). Let τ be a stopping time with P[τ < ∞] > 0
(infinity is allowed), then the process

Bτ
t ≜ 1{τ<∞} (Bτ+t − Bτ)

is a Bronwian motion under the probability measure P (·|τ < ∞) which is independent of Fτ.

Remark 2.3.9. Just as the proof of the zero one law, we show independence via finite dimensional distri-
butions. Also, we don’t know anything about Brownian motion at stopping time, but we can approximate
the stopping times with discrete stopping times. In such case, for example, say τ is discrete, and on the set
{τ = n}, we can use Bn instead of Bτ.

Proof. Let approximate it with discrete stopping times that decreases to τ:

τn(ω) ≜
∞

∑
k=0

1{k/2n≤τ<(k+1)/2n}(ω)
k + 1

2n + ∞1{τ=∞} (2.9)

Let A ∈ Fτ, so by definition, A ∩ {τ ≤ t} ∈ Ft, and let Ak = A ∩
{

τn = k
2n

}
∈ F k

2n
, and we note

that Ak ∩ {τ ̸= ∞} = Ak, and let f be a bounded continous function, then∫
A∩{τ ̸=∞}

f (Bτn+t − Bτn) = ∑
k∈N

∫
Ak∩{τ ̸=∞}

f (Bτn+t − Bτn)

= ∑
k∈N

∫
Ak

f
(

B k
2n +t − B k

2n

)
= ∑

k∈N

P[Ak]
∫

f
(

B k
2n +t − B k

2n

)
= ∑

k∈N

P[Ak ∩ {τ ̸= ∞}]E [ f (Bt)]

= P[A ∩ {τ ̸= ∞}]E[ f (Bt)]

take n → ∞ and by dominated convergence theorem we have∫
A

f (Bτ+t − Bτ) = P[A]E[ f (Bt)].

In particular, when A = Ω this tells us Bτ+t − Bτ =d Bt. So both independence and identical
distribution are proven.

Next we have reflection principle, and there are many versions of it that all tells the same thing:

Theorem 2.3.18 (Reflection Principle). Let B be a Brownain motion and τ be an stopping time. Define

B̃t ≜ 2Bt∧τ − Bt,

then B̃t =d Bt.

Proof. By the Strong Markov property, we have Bτ
t ≜ Bt+τ − Bτ is a standard Brownian motion,

hence so is −Bτ
t . Now we make the observation (or clever change of notation) that

B̃t = Bt∧τ + B(t−τ)++τ − Bτ = Bt∧τ − Bτ
(t−τ)+

since when t ≤ τ, above is Bτ
t = Bt∧τ − B(τ−t)++t − Bτ = Bt − Bt − Bτ = Bτ and when t ≥ τ we get

Bτ
t = Bτ + Bt − Bτ = Bt, same as B̃t. But we can write Bt as

Bt = Bt∧τ − (B(t−τ)++τ − Bτ) = Bt∧τ + Bτ
(t−τ)+ (2.10)

So they are equal in distirbution due to the fact that −Bτ
(t−τ)+ =d Bτ

(t−τ)+ .
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Perhaps the proof to this version does not give insight to the reflection principle, so here is an
other version:

Theorem 2.3.19 (Reflection Principle 2). Let τa = inf{t ≥ 0 : Bt = a} where {Bt} is an Brownian
motion, then

P [τa ≤ t, Bt ≤ b] = P [Bt ≥ 2a − b]

for b ≤ a < ∞.

Proof. With above setup, do a direct computation

P [τa ≤ t, Bt ≤ b] = P [τa ≤ t, Bt − a ≤ b − a]
= P [τa ≤ t, Bt − Bτa ≤ b − a]

= P
[
τa ≤ t, B(t−τa)+τa − Bτa ≤ b − a

]
However, Wt = Bs+τa − Bτa itself is a Brownian motion and it is independent of Fτa by the Strong
Markov Property about, hence

P
[
τa ≤ t, B(t−τa)+τa − Bτa ≤ b − a

]
= P

[
τa ≤ t,−B(t−τa)+τa + Bτa ≤ b − a

]
= P [τa ≤ t, Bt ≥ 2a − b]
= P [Bt ≥ 2a − b]

where the last equality is due to the fact {Bt ≥ 2a − b} ⊃ {τa ≤ t} since 2a − b ≥ a because
b ≤ a.

Remark 2.3.10. If one is unsatisfied with the use of Strong Markov Property (like I am), we can get around
with that and use simply intigration: Let τn = ∑∞

k=1
k

2n 1 k−1
2n ≤τ< k

2n
(ω) + ∞1τ=∞(ω), and directly compute

P [τa ≤ t, Bt − Bτa ≥ b − a], let tn = max{k : k
2n ≤ t}

P [τa ≤ t, Bt − Bτa ≥ b − a] = lim
n→∞

tn

∑
k=1

P

[
Bt − Bτn ≥ b − a, τn =

k
2n

]
= lim

n→∞

tn

∑
k=1

P
[

Bt − B k
2n

≥ b − a
]

P

[
τn =

k
2n

]
= lim

n→∞

∞

∑
k=1

P [−Bt ≥ b − a − Bτn , τ ≤ t]P

[
k − 1

2n ≤ τ <
k

2n

]
take the limit n → ∞, by DCT we see the last expression is∫ ∞

0
P [τ ≤ t,−Bt ≥ b − 2a] dP [τ ≤ s] = P [Bt ≤ 2a − b, τ ≤ t]

Remark 2.3.11. A particular case of above is when a = b, here we have P [τa ≤ t, Bt ≤ a] = P [Bt ≥ a].
However,

P

[
max
0≤s≤t

Bs ≥ a
]
= P

[
max
0≤s≤t

Bs ≥ a, Bt > a
]
+ P

[
max
0≤s≤t

Bs ≥ a, Bt < a
]

= 2P

[
max
0≤s≤t

Bs ≥ a, Bt < a
]

= 2P [Bt ≥ a]
= P [Bt ≥ a] + P[Bt ≤ a] = P[|Bt| ≥ a]

where the last equality is due to ”union of disjoint sets”.
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We orgnize the above into a theorem which is also called the Reflection Principle

Theorem 2.3.20 (Reflection Principle 3). Let Bt be a Brownian motion, then max0≤s≤t Bt =d |Bt|.

Remark 2.3.12. We’ll see by Wald’s identity that expectation of hitting time of Brownian motion is infinite.

Having the reflection principle on hand, we can calculate the distribution of Brownain stopping
time:

Lemma 2.3.2. Let B be a Brownain motion and a ≥ 0, and let b ≤ a, then the joint density function of
(max0≤s≤t Bs, Bt) is

g(a, b) =
√

2(2a − b)√
πt3

exp
(
− (2a − b)2

2t

)
Proof. Let Mt = max0≤s≤t Bt, then P [Mt ≥ a, Bt ≤ b] = P [Bt ≥ 2a − b], then the joint density is

g(a, b) =
∂2

∂b∂a

(
1 − 1√

2πt

∫ ∞

2a−b
exp

(
−x2

2t

)
dx
)

=
∂

∂b

√
2

πt
exp

(
− (2a − b)2

2t

)
=

√
2(2a − b)√

πt3
exp

(
− (2a − b)2

2t

)

From Remark 55, the next lemma is immediate

Lemma 2.3.3. Let B be a BM and τa = inf{t ≥ 0 : Bt = a}, then it has the distribution

fτa(t) =
a√

2πt3
exp

(
− a2

2t

)
Proof.

P [τa ≤ t] = P

[
max
0≤s≤t

Bt ≥ a
]
= 2P [Bt ≥ a] = 2P

[
B1 ≥ a√

t

]
so

fτa(t) =
∂

∂t
P [τa ≤ t] =

∂

∂t

(
1 −

∫ ∞

a√
t

1√
2π

exp
(
−x2

2

)
dx

)
=

a√
2πt3

exp
(
− a2

2t

)
.

Wald’s Identity for Brownain Motion

Here is an important result coming from optional sampling theorem for Brownain motion:

Theorem 2.3.21 (Wald’s Identity for BM). Let B be a Brownain motion and τ is a stopping time, the if
either

1. E[τ] < ∞ or
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2. Bτ is uniformly integrable,

Then we have E[Bτ] = 0 and if (1) holds, then we have E[B2
τ] = E[τ].

Proof. We first do (2): Bτ
t = Bτ∧t itself forms a true martingale, so unifromly integrability im-

plies a.e. convergence (Doob’s mtg convergence theorem), moreover, it converges in L1 as well, so
limn→∞ E[Bτ∧n = E[Bτ] = 0.

For (1) we show (1) ⇒ (2): let’s consider the quadratic variation of Bτ:

⟨Bτ⟩t = ⟨B⟩t∧τ = t ∧ τ

Note that ⟨Bτ⟩t is dominated by τ which is in L1, we have L1 convergence:

lim
t→∞

E [⟨Bτ⟩t] = E

[
lim
t→∞

t ∧ τ

]
= E[τ] < ∞

hence Bτ is uniformly integrable mtg and the above calculation also shows that E[B2
τ] = E[τ] under

(1).

Zero Set of Brownian Motion

Let’s define the pathwise zero set of Brownain motion to be

Lω ≜ {t ∈ R+ : Bt(ω) = 0}

Remark 2.3.13. Here we study the zero sets, but you can actually change the 0 in above to any number and
the following result would still be true.

Theorem 2.3.22. For P-a.e. the zero set Lω:

1. Has lebesgues’ measure zero.

2. is closed and unbounded.

Proof. (1) Here we note lebesgues’ measure of the zero set is nonnegative, and if the expectation of
a nonnegative function is zero, then the function itself is zero, and we will use this and Fubini to
prove (1):

E[λ({t ∈ R+ : Bt = 0})] = E

[∫ ∞

0
1{Bt=0}(t)

]
=
∫ ∞

0
E
[
1{Bt=0}(t)

]
dt =

∫ ∞

0
P [Bt = 0] dt = 0.

The closedness is due to the fact that Lω = B·(ω)−1({0}) and Brownian motion sample pathes are
continous. The unboundedness comes from the time inversion property, namely,

B̃t =

{
tB 1

t
t ̸= 0

0 t = 0

is an Brownian motion, and since the Brownain motion hits zero infinitely many times near t = 0,
hence B1

t
hits zero infinitely many times near t = 0, that is, Bt hits zero infinitely many times near

infinity.
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The Law of Iterated Logarithm

We first recall the upper and lower bound of the tail probability of standard normal distribution:

Lemma 2.3.4.

u
u2 + 1

e−
u2
2 ≤

∫ ∞

u
e
−x2

2 dx ≤ u−1e−
u2
2 (2.11)

Theorem 2.3.23 (The Law of Iterated Logarithm). Let B be a Brwonain motion, then

limt→∞
Bt√

2 log log 1
t

= limt→∞
Bt√

2 log log t
= 1

Remark 2.3.14. One can see that this can also be used to prove τa < ∞ a.e.. Also, we only need to prove one
of them by tB 1

t
is also a Brwonain motion.

The following proof is based on [KK97].

Remark 2.3.15 (Strategy of the Proof). Here again, we are trying to get a.e. and limiting result from
distributional property, so Borel-Cantelli is likely to kick in. Also, one can observe that it is hard to prove this
directly without some ”time change”, since double logarithm is hard to work with. However, one can use rn

for r > 1 and n → ∞ instead of t → ∞, since log log rn = log (n log(r)) which is easier to work with. Here
we show the limit sup both less than and greater than 1.

Proof. In this proof, we adapt to the Harmonic anlysis’ notation, using the same letter C for different
constants. First we show

P

[
limt→∞

Bt√
2 log log t

> c

]
= 0

for all c > 1. We first recall that the running max of the Brownian motion has the same distribution
as the absolute value of Brownian motion: P [max0≤s≤t Bt ≥ a] = P [|Bt| ≥ a] = 2P [Bt ≥ a]. So,
from the estimate for tail of normal distirbutions, we have

P

[
max
0≤s≤t

Bs ≥ u
√

t
]
= 2P

[
Bt ≥ u

√
t
]
= 2P

[
1√

t
Bt ≥ u

]
= 2P [B1 ≥ u] ≤ Cu−1e−

u2
2

Let r > 1, and let c > 0 to be chosen later, and let h(t) =
√

2t log log t, and denote the running max
to be M(t) and do a direct calculation

P [M(rn) ≥ ch(rn)] = 2P
[

M(rn) ≥
√

rn
(

c ·
√

2 log log rn
)]

(2.12)

≤ C
1

c
√

2 log (n log r)
exp

(
−c2 log (n log r)

)
(2.13)

≤ C (log n)−
1
2 n−c2

(2.14)

where the last constant C only depens on c, r. Note that the last expression is summable for any
c > 1, hence

P [M(rn) ≥ h(rn) infinitely often] = 0
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which proves the case for upper bound.
Before we go into the lower bound, we’ll need the case for which we change h(rn) to h(rn−1)

above, we will see in the end why (one comes back and add something to the proof becasue it is
needed later, this is normal):

P
[

M(rn) ≥ ch(rn+1)
]
= 2P

[
B(rn) ≥

√
rn
(

cr
1
2 ·
√

2 log log rn+1
)]

≤ C
1

c
√

2 log (n log r)
exp

(
−c2r log (n + 1) log r)

)
≤ C (log n)−

1
2 n−c2r

here we choose c > 1√
r then it is also summable. Hence P

[
limn→∞

M(rn)
h(rn−1)

> c
]
= 0 for all c > 1, so

limn→∞
B(rn)

h(rn−1)
≤ 1/

√
r. I’ll refer this result as the ”comeback” later.

For the lower bound, we use the lower estimate from the tail of standard normal random vari-
ables to bound the probability below, but we need to bound the probability of the increment below
since we want to show the maximum greater than h(t) infinitely many often with probability one
and we can only get that from the second Borel-Cantelli.

P [Brn − Brn−1 ≥ ch(rn)] = P

[(
rn−1

)− 1
2 Brn−1(r−1) ≥ c

√
r
√

2 log (n log r)
]

= P

[
Br−1 ≥ c

√
2r log (n log r)

]

= P

 Br−1√
r − 1

≥ c

√
2r log (n log r)

r − 1


= P

B1 ≥ c

√
r log (n log r)

r − 1


≥

c
√

r 2 log(n log r)
r−1

c2 r log(n log r)
r−1 + 1

exp
(
− c2r log (n log r)

r − 1

)
= C (log n)−

1
2 n− c2r

r−1 .

We let 0 < c ≤
√

r−1
r to make it not summable, and note that for each n, the increment in the

beginning are independent, so by Borel-Cantelli, we have

limn→∞
B(rn − B(rn−1))

h(rn)
≥

√
r√

r − 1
.

However, by the previous ”comeback” we see limn→∞
−B(rn−1)

h(rn)
≤ 1/

√
r. Combining the results we

have

limn→∞
B(rn)

h(rn)
≥
√

r
r − 1

+
1√
r

take r to be large to see the limsup is at least 1.
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Brownain Motion as a Martingale

Finally, as we noted before, Brownian motion is a Martingale. It has quadratic variation t:

Theorem 2.3.24. Let Bt be a standard Brownain motion, then ⟨B⟩t = t a.e. and if Πn is a sequence of
partition of [0, t] with limn→∞∥Πn∥ = 0, then

lim
n→∞ ∑

Πn

(
Btn+1 − Btn

)2 → t in probability (measure).

Proof. As we noted before, if a process Bt has independent increments and has mean zero, then
B2 − E

[
B2

t
]

is a martingale. So in the case of Brownian motion, E
[
B2

t
]
= t and by the uniqueness

of Doob Meyer’s decompsoition, we see t is the quadratic variation. SO by similar theorem in the
continous Mtg theory, the limit converges to its quadratic variation in probability.

However, we did not prove either of the theorem used in this proof, so we might as well prove
this special case here, we note by independent increment, we see that it converges to t in L2:

∫
Ω

(
∑
Πn

(Btn+1 − Btn)
2 − (tn+1 − tn)

)2

dP ≤ ∑
m,n

E
[
(Btn+1 − Btn)

2(Btm+1 − Btm)
2
]

−2t ∑
Πn

E
[(

Btn+1 − Btn

)2
]
+ t2

where the second term is −2t2, so we need to show the first term converges to t2 as well:

∑
m,n

E
[
(Btn+1 − Btn)

2(Btm+1 − Btm)
2
]
= ∑

m ̸=n
E
[
(Btn+1 − Btn)

2(Btm+1 − Btm)
2
]
+ ∑

Πn

E
[(

Btn+1 − Btn

)4
]

The second term on the right hand side goes to zero, one can either check this directly, or recall if
p-variation exists and strictly positive, then p + ϵ-variation goes to zero. Now for the first term, by
independent increment, one has

∑
m ̸=n

E
[
(Btn+1 − Btn)

2(Btm+1 − Btm)
2
]
= ∑

m
(tm+1 − tm) (t − (tm+1 − tm))

= t2 − ∑
Πn

(tm+1 − tm)
2

and we see the second term goes to zero, hence we have the desried result.

Donsker’s Invariance Principle (Functional CLT)

Here we have two important theorems, both has names. One tells us that any square integrable
random variable can be viewed as a sampling of Brownian motion at a certain stopping time (that
is amazing!) and the other tells use that random walks (after rescaling) converges to Brownian
motion in functional space C([0, T]), the sapce of continuous functions on compact interval with
uniform convergence topologies.

For the first embeding theorem we want the targetting X to be centered (E(X) = 0) where we
can use optional sampling thoerem from martinagle thoery. However, we immediately run into
difficulties since there is no tool for us to construct a such a stopping time directly, so we have to
look at the simple cases and see what we can do with them.
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We first note that if X is a random variable that only takes {a, b} ⊂ R with a < 0 < b, then it
is easy to find a stopping time such that Bτ =d X. τ == inf{t ≥ 0 : Bt ∈ {a, b}} is a promising
candidate, since for a centered X whose distribution is supported on {a, b}, we must have{

P [X = a] + P [X = b] = 1
aP [X = a] + bP [X = b] = 0

and there is only one solution to this, namely, P[X = a] = −a
b−a and P[X = b] = b

b−a . It is easy to see
that Bτ has the same distribution since it must satisfy the same set of eqautions.

Since our goals is to write X = Bτ for some stopping time τ for any centered square integrable
random variable, it would be nice if we can decompose X in some way into random variables that
is supported on only two points on the real line. There is a way, and there is a spectial term for
such:

Definition 2.3.9. We say {Xn,Fn} is a binary splitting martingale if Xn+1 conditioned on the event {X0 =
x0, . . . , Xn = xn}, when it has nonzero probability, is supported on at most two points of the real line.

The following lemma gives us a decompsoition of general X into a limit of binary splitting
martingale:

Lemma 2.3.5. Let X be a square integrable martingale, then there exists a binary splitting martingale
{Xn,Fn} such that Xn → X both in L2 and a.e..

Proof. Here we can construct such martingale explicitely: Let X0 = E [X] and define ξi recurssive
by

ξn =

{
1 X ≥ Xn

−1 X < Xn

then we define Xn ≜ E [X|σ(ξ0, . . . , ξn−1)], which is obviously a martingale. Also note that σ(ξ0)
splits the underlying probability space into two parts: {X ≥ E[X]} and {X < E[X]}, and σ(ξ0, . . . , ξn)
splits each partition of σ(ξ0, . . . , ξn−1) into two parts. So σ(ξ0, . . . , ξn−1) splits Ω into 2n partitions
and each partition is of the form {X0 = x1, . . . , Xn−1 = xn−1} therefore it is a binary splitting
martingale.

We note |E [X|F ]| ≤ E[|X||F ], so {Xn} is uniformly integrable and bounded in L1, so by
Doob’s convergence and the theorem quickly following that, we have Xn → E[X|F∞] where F∞ ≜
σ(ξ0, . . . , ξn, . . . ).

Now our takes is to show X∞ = X a.e. which can be acheived by showing E (|X∞ − X|) = 0.
However, we note that

lim
n→∞

ξn (Xn+1 − X) = |X∞ − X|

since on the set X∞ = X, the above is true by simply a.e. convergence, on the set {X∞ > X}, then
for fixed ω, for large enough n, we have Xn > X, so ξn = 1 so the left is X∞ − X, and on the set
{X∞ < X} we have for all ω, there is n(ω) with all n ≥ n(ω) that Xn > X, so ξn = −1 and the
above holds true as well.

Also, since the left hand side is bounded by 2|X|, by DCT we have L1 convergence, so

E [|X∞ − X|] = lim
n→∞

E [ξn(Xn+1 − X)] = lim
n→∞

E [E [ξn(Xn+1 − X)] |Fn+1] = 0
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Now we are ready for the first theorem:

Theorem 2.3.25 (Skorokod’s embeding theorem). Let X ∈ L2(Ω) be a centered random variable and let
B be a Bronwian motion, then there is a stopping time τ such that Bτ = X and E[τ] = E[B2

τ] = E[X2].

Proof. Let Xn → X be a binary splitting martingale. Define τ1 = inf{t : Bt = X1}, looking back
at the construction of such binary splitting martiangle, when E[X] = 0, then the support of X is
{a, b} where one is positive and the other is negative, so the definiton of τ1 makes sense. Now we
can utilize the strong markov property and define τn with similar method with a Brownian motion
starting at τn−1 (partition Ω into τn=1 = xn−1

1 , . . . , xn−1
k and define τn on those partitions seperately).

So in the end we get a sequence of increasing stopping times τn ↑ τ for some τ. However, we do
have E[τn] = E[X2

n], so by dominated convergence theorem on the left and previous lemma on the
right, we have the desired convergence result, namely,

Eτ = EX2.

The object simple random walk is defined as follows: let ξi be mean zero and Eξ2 = 1 i.i.d
random variables, and let Sn = ∑n

i=1 ξi and let S∗ be the linear interpolation of S, namely,

S∗(t) = S[t] + (t − [t])
(

S[t+1] − S[t]

)
= S[t] + (t − [t])ξ[t]+1

where [t] is the integer part of t.
We now extend the Skorokod’s theorem to a sequence of random variables

Proposition 2.3.7. Let Sn be defined as above, and let B be a Brownain motion, then there is {τi} such that
S1, S2, · · · =d B(τ1), B(τ2), . . . .

Proof. Here we let τ1 be the stopping time such that Bτ1 = ξ1 as provided by Skorokod’s embeding
thoerem. For τ2, we know that B1

t = Bt+τ1 − Bτ1 is a Brownian motion by Strong Markov Property,
and it is ⊥ to Fτ1 . So we define τ2 be the stopping time such that B1

τ2
=d ξ2 = ξ1.

It is easy to see that τ1 ⊥ τ2 and τ1 =d τ2 and E[τi] = 1. Also, B1
τ2
+ Bτ1 =d ξ1 + ξ2 = Bτ1+τ2 .

Now we can define τn inductively for n ≥ 3.

Then we are ready to build the functional CLT, and the first step is to embed the scaled random
walk into a Brownain motion, and the following theorem tells us exactly how to do that:

Theorem 2.3.26. Let Sn = ∑n
i=1 ξi, where ξi are i.i.d with mean zero and Eξ2 = 1, then there exists

triangular array {τn
i }n

i=1 such that

1. E[τn
i ] = 1 for all n, i,

2. for each n, {τn
i }1≤i≤n are i.i.d.,

3. the following two maps have the same distribution{
Sk√

n
; 1 ≤ k ≤ n

}
and

{
B
(

τn
1 + · · ·+ τn

k
n

)
; 1 ≤ k ≤ n

}

Remark 2.3.16. From first glance, we would want to use one of the scaling property to move 1√
n term inside

of the time component of the Brownain motion. But since τ′
i s are random times, there is no theorem tells us

we can do that, so we have to take a slightly longer route.
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Proof. Let Bn =
√

nB
( t

n
)

which is still a Brownain motion and is of the form of the right hand side
of (3). Now apply the previous theorem to Sk for k = 1, . . . , n and get a ”row” of stopping times
τn

1 , . . . , τn
n so that

1√
n

Bn

(
τn

1 + · · ·+ τn
k

n

)
=d

Sk
n

∀1 ≤ k ≤ n

but the left hand side, by construction, is B
(

τn
1 +···+τn

k
n

)
.

(1) and (2) is a result of the construction by the previous theorem.

Remark 2.3.17. We also note that since τn
i and τm

i are both constructed from Brownian motions in the
exactly the same way, so they are equal in distribution but not neccessarily independent. So there is a
sequence of stopping times {τi} for which τi = τn

i for all n, and τi’s are independent.

Now we are ready to state and prove the big theorem of this subsection

Theorem 2.3.27 (Donsker’s Invariance Principle). Let Sn = ∑n
i=1 ξi where {ξi} is a sequence of i.i.d.

where with mean zero and E[ξ2
i ] = 1, then

S[tn]√
n

→ Bt in distribution

in C[0, 1] with uniform convergence topology.

Remark 2.3.18. Here, it is pretty clear on what to do, the previous theorem provided us something that
is easier to work with with sup norm, so we can turn the rescaled partial sums into Brownain motions.
Since Bronwian motion is continous, so uniformly continous, we might as well try to show convergence in
probability instead of in distribution.

Proof. Since
S[tn]√

n =d Yn(t) ≜ B
(

τn
1 +···+τn

[tn]
n

)
, we can show Yn(t) ⇒ B(t) in C([0, 1]) in probability

instead. Also, by the previous remark, we can replace τn
i ’s by simply τi, i.i.d. Finally, let Tn(t) =

τ1+···+τ[nt]
n . To show the convergence in probability in the space of continous functions on the unit

interval is really to control the following:

P

[
sup

0≤t≤1
|Yn(t)− B(t)| ≥ ϵ

]
= P

[
sup

0≤t≤1
|B (Tn(t))− B(t)| ≥ ϵ

]
Let since each Brownain path is uniformly continous on the unit inteval, so for all ω ∈ Ω (we get
rid of the null set for which Brownian path is not uniformly conitnous), and for all ϵ > 0, there
is δ(ω) with |Bt(ω) − Bs(ω)| < ϵ for all |t − s| < δ(ω). For notations, we denote Bω(t) by the
Brownian path ω at time t. Then the above probability on the right hand side is really dominated
by

P

[
ω ∈ Ω : sup

0≤t≤1
|Tn(t)(ω)− t| ≥ δ(ω)

]
so if we can show supt∈[0,1] |Tn(t)− t| → 0, then we are done, but this is really

sup
t∈[0,1]

∣∣∣∣∣∑
[tn]
i=1 τi

n
− t

∣∣∣∣∣ ≤ 1
n
+ sup

1≤k≤n

∣∣∣∣∣∑k
i=1 τi

n
− k

n

∣∣∣∣∣
≤ 1

n
+ sup

1≤k≤n

k
n

∣∣∣∣∣∑k
i=1 τk

k
− 1

∣∣∣∣∣ .
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We run into some trouble at this point, since the above expression sugguests strong law of large
number, but we are taking n → ∞ and take sup of k for each n. But there is a trick that helps us to
split this into two parts,

sup
1≤k≤n

k
n

∣∣∣∣∣∑k
i=1 τk

k
− 1

∣∣∣∣∣ ≤ sup
1≤k≤ϵn

k
n

∣∣∣∣∣∑k
i=1 τk

k
− 1

∣∣∣∣∣+ sup
k>ϵn

∣∣∣∣∣∑k
i=1 τi

k
− 1

∣∣∣∣∣ k
n

≤ ϵ sup
1≤k≤ϵn

∣∣∣∣∣∑k
i=1 τk

k
− 1

∣∣∣∣∣+ sup
k>ϵn

∣∣∣∣∣∑k
i=1 τi

k
− 1

∣∣∣∣∣ k
n

now we can use the strong law of large number to see the second term converges to zero a.e. Also
note that for a.e ω, ∑1≤i≤k τi(ω)

k → 1, so for each such ω, the sup over k is finite a.e. so we take
n → ∞, and ϵ ↓ 0 we see the convergence.

2.4 Stochastic Integration and It’s Properties

We have seen in the Gaussian measure section that we can make sense of integration of an L2(R)
function with respect to a Gaussian process, hence with respect to a brownain motion, and the end
result would be a Gaussian process. It is not hard to see that if we integrate a L2 continous function
with respect to a Brownian motion, then the end result is also an continous Gaussian process. In
this section, we will extend this idea to the case where the itnegrand is an ”L2 bounded” random
function. We will shortly see what this means.

First we recall couple of definitions and theorems from before:

Definition 2.4.1. Let {Xt}t∈R+ be a continous time stochastic process, we say it is progressively measurable
if

X·(·) : (ω, t) → Xt(ω)

is measurable with respect to Ft ⊗B([0, t]) for all t ≥ 0, we denote this class of function by P

Theorem 2.4.1. Let H2 be the collection of martingales M such that E [⟨M⟩∞] < ∞. Then H is an Hilbert
space whose Hilbert product is defined to be ⟨M, N⟩H2 ≜ E [⟨N, M, ⟩∞].

Here is a new definition:

Definition 2.4.2. Let M ∈ H2, and denote L2(M) by the progressively measurable processes H s.t.

E

[∫ ∞

0
Hsd⟨M⟩s

]
< ∞. (2.15)

It is easily seen that d⟨M⟩dP defines a measure on (R+ × Ω,P). So in reality, L2(M) ≡
L2 (R+ × Ω,P , d⟨M⟩). So L2(M) itself is again a Hilbert space with inner product defined by

⟨H, K⟩L2(M) = E

[∫ ∞

0
HsKsd⟨M⟩s

]
. (2.16)

Definition 2.4.3. An Elementary Process is a progressively measurable process of the following form:

H(t) =
∞

∑
n=0

Hn1(tn,tn+1]
(t) (2.17)

where Hn ∈ Ftn are bounded random variables does not depend on time, and Hn ̸= 0 for finitely many n.
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As one might have guessed, the construction of stochastic integral is not much differnet from
usual calculus:

Theorem 2.4.2. The class of simple process is dense in L2(M) for all M ∈ H2.

Proof. Since L2(M) is a Hilbert space, we only have to show that if H ∈ L2(M) is that

E

[∫ ∞

0
HsKsd⟨M⟩s

]
= 0

for all elementary processes K, then H ≡ 0 in L2(M).
But before that, we observe: since E [⟨M⟩∞] < ∞, the measure d⟨M⟩dP is actually a finite

measure on the space R+ × Ω. Therefore, by Jessen’s inequality (with some normalization on the
measure), we have

E

[∫ ∞

0
|Hs|d⟨M⟩s

]
< ∞.

In other words, the process

Xt =
∫ t

0
Hsd⟨M⟩s (2.18)

is in L1(P) for all t ≥ 0. Moreover, the process Xt has finite variation.
Let s ≥ 0 be arbitrary, and let A ∈ Fs. Then by assumption,

E [(Xt − Xs) 1A] = E

[
1A

∫ t

s
Hud⟨M⟩u

]
= E

[∫ t

s
HuKud⟨M⟩u

]
= 0

where Ku = 1A1(s,t] which is an elementary process. Also, since H is progressively measurable, we
see Xt ∈ Ft for all t. So the above calculation shows that Xt is a mtg, but with finite variation, so it
has to be zero. That means, Hu ≡ 0 with respect to the measure d⟨M⟩t.

Now we define stochastic integration of elementary processes:

Definition 2.4.4. Let Ht be an elementary process s.t. H(t) = ∑N
n=1 Hn1(tn,tn+1]

, then we define the stochas-
tic integration of H with respect to M ∈ H2 to be

∫ t

0
HsdMs = (H · M)t ≜

N

∑
n=1

Hn
(

Mtn+1∧t − Mtn∧t
)

.

Remark 2.4.1. The above definition should look familiar, it is the Martingale Transform we introduced to
prove Optional Sampling before. Such a fancy name for stochastic version of simple function integration.

Here are some properties of stochastic integration of elementary processes:

Theorem 2.4.3. Let H = ∑n
i=1 Hi1(ti,ti+1]

be a elementary process, and let M ∈ H2, then

1.
∫ t

0 HsdMs is a true martingale.

2. The map H →
∫ ·

0 HsdMs is an isometry from L2(M) to H2.
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3.
∫ ·

0 HsdMs is a unique element in H2 such that

⟨
∫ ·

0
HsdMs, Ns⟩ =

∫ t

0
Hsd⟨M, N⟩s ∀N ∈ H2.

4. In particular, ⟨
∫ ·

0 HsdMs,
∫ ·

0 HsdMs⟩ =
∫ t

0 H2
s d⟨M⟩s.

5. If τ is a stopping time, then ∫ t∧τ

HsdMs =
∫ t

0
1[0,τ](s)HsdMs. (2.19)

or in Le Gal’s notation in ([LG16])(
1[0,τ]H · M

)
= (H · M) = (H · Mτ)

Proof. (1) Is straight forward: let 0 ≤ s ≤ t and consider

E

[
n

∑
i=1

Hi
(

Mt∧ti+1 − Mt∧ti

) ∣∣Fs

]

We note that s divies {ti} into two parts, let i0 = min{i : ti ≥ s}, then the above conditional
expectation is the same as

E

[
. . . E

[
n

∑
i=1

Hi
(

Mt∧ti+1 − Mt∧ti

) ∣∣Ftn

]
. . .
∣∣Fti0

∣∣Fs

]

=E

[
i0−1

∑
i=1

Hi
(

Mti+1 − Mti

) ∣∣Fs

]

=
n

∑
i=1

Hi
(

Mti+1∧s − Mti∧s
)

.

This mtg is obvious in H2 since for s, t ≥ tn, (H · M)t = (H · M)s henece the quadratic variation
will be constant after tn.

(2)

E

[
n

∑
i=1

Hi
(

Mti+1 − Mti

)]2

= ∑
i ̸=j

E
[

HiHj
(

Mti+1 − Mti

) (
Mtj+1 − Mtj

)]
+

n

∑
i=1

E
[

H2
i
(

Mti+1 − Mti

)2
]

The first sum is obviously zero which can bee seen by conditioning on the Fs where s = ti ∧ tj.
Now we look at each term in the second sum:

E
[

H2
i
(

Mti+1 − Mti

)2
]
= E

[
E
[

H2
i
(

Mti+1 − Mti

)2 ∣∣Fti

]]
= E

[
H2

i E
[(

Mti+1 − Mti

)2 ∣∣Fti

]]
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However, we note that M2
t − ⟨M⟩t is a martingale, so

E
[

M2
ti+1

− M2
ti
|Fti

]
= E

[
⟨M⟩ti+1 − ⟨M⟩ti |Fti

]
so plug this into above we see the isometry property.

(3) We first observe that each term of the integration defines a martingale, that is,

Mi
· = Hi

(
Mti+1∧· − Mti∧·

)
is a martingale and it is identically zero on the interval [0, ti], and constant (random variable) on
[ti+1, ∞). So we see 〈∫ ·

0
HsdMs, N

〉
t
=

n

∑
i=1

⟨Mi, N⟩t

However,

⟨Mi, N⟩t = ⟨Hi
(

Mti+1∧· − Mti∧·
)

, N⟩t = Hi
(
⟨M, N⟩t∧ti+1 − ⟨M, N⟩t∧ti

)
so 〈∫ ·

0
HsdMs, N

〉
t
=

n

∑
i=1

⟨Mi, N⟩t =
n

∑
i=1

Hi
(
⟨M, N⟩t∧ti+1 − ⟨M, N⟩t∧ti

)
=
∫ t

0
Hsd⟨M, N⟩s

Now suppose there is some Y such that
〈∫ ·

0 HsdMs, N
〉

t =
∫ t

0 Hs⟨M, N⟩s = ⟨Y, N⟩ for all N ∈ H2.
Then we have 〈∫ t

0
HsdMs − Y, N

〉
t
= 0 ∀N ∈ H2

and let N =
∫ t

0 HsdMs − Y we see that
∫ t

0 HsdMs − Yt is identically zero.
(4) is a direct consequence of (3).
For (5), we use the characterization from (3), let N ∈ H2, we calculate

⟨(1[0,τ]H · M), N⟩ =
(

1[0,τ]H
)
· ⟨M, N⟩ = H · ⟨M, N⟩τ = H · ⟨Mτ, N⟩

where the second to the last equality is due to the nature of lebesgues-Stieltjes integral. Now we
consider

⟨(H · M)τ , N⟩ = ⟨H · M, N⟩τ = (H · ⟨M, N⟩)τ =
(

1[0,τ]H
)
· ⟨M, N⟩

where the last equality is also due to the nature of lebesgues-Stieltjes integral.

Since stochastic integral with respect to a fixed H2 space element is an (partial) isometry from a
dense subspace of L2(M) to H2, hence there is a natural extension to make the map continous. So
we use this as the definition of stochastic integral:

Definition 2.4.5. Let H ∈ L2(M) where M ∈ H2, let Hn → H in L2(M), then we define the stochastic
integral of H with respect to M to be

(H · M)· =
∫ ·

0
HsdMs = lim

n→∞

∫ ·

0
Hn

s dMs
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Remark 2.4.2. It can be check with not much effort that all properties in Theorem 68 holds for general
integrand (Kunita-Watanabe Inequalities and density argument).

Theorem 2.4.4. Let M ∈ H2 and H ∈ L2(M), then all the properties in Thoerem 68 holds.

Here we prove a few of them. Note that the characterization of (3) plays an important role in
the proof of Thoerem 68. This will also be the case in the following proof.

Proof. Since H2 is an Hilbert space and E , the space of elementary processes, is dense in H2, and
the stochastic integration is an isometry from E ⊂ L2(M) to H2. So the continous extention of this
map is an isometry from L2(M) to H, hence (H · M) ∈ H2. This solves (1) and (2) (well, this is just
stating the obvious anyway).

For (3), let Hn → H in L2(M), then consider

lim
n→∞

⟨(Hn · M) , N⟩ = lim
n→∞

Hn · ⟨M, N⟩

We note that by Kunita-Watanabe along with Cauchy-Schwartz’s Inequalities, we have

E

[∫ ∞

0
|Hn

s − Hs| d⟨M, N⟩s

]
≤ E

[√∫ ∞

0
(Hn

s − Hs)
2 d⟨M⟩s

√
⟨N⟩∞

]

≤

√
E

[∫ ∞

0
(Hn

s − Hs)
2 d⟨M⟩s

]√
E [⟨N⟩∞]

which tends to zero. So

lim
n→∞

⟨(Hn · M) , N⟩ = lim
n→∞

Hn · ⟨M, N⟩ = H · ⟨M, N⟩

where the last convergence is in L1(P). Now the only thing left to show is:

⟨H · M, N⟩ = lim
n→∞

⟨(Hn · M) , N⟩

However, this is just a consequence of the isometric property:

E [⟨(H − Hn) · M, N⟩] ≤
√

E [⟨(Hn − H) · M⟩∞]
√

E [⟨N⟩∞]

by the isometric property, we see that

E [⟨(Hn − H) · M⟩∞] = ∥Hn − H∥L2(M) → 0.

so ⟨Hn · M, N⟩ → ⟨H · M, N⟩ in L1(P).
The last two properties depens only on the above characterization and not the properties of

elementary process, so they are automatically true due to (3).

In calculus, for two functions f , g and a measure µ, if we denote G(x) =
∫ x

0 g(y)µ(dy), then we
have the following ∫ t

0
f (x)dG(x) =

∫ t

0
f (x)g(x)µ(dx)

Similar things also hold in stochastic integrals
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Theorem 2.4.5. Let K, H be progressively measurable processes and M ∈ H2. Then HK ∈ L2(M) if and
only if H ∈ L2((K · M)). If the latter holds, then∫ ·

0
Hsd (KM)s =

∫ ·

0
HsKsdMs (2.20)

or more intuitively,

∫ t

0
Hsd

∫ s

0
KudMu =

∫ t

0
HsKsdMs

Proof. We prove the integrability of the stochastic integral first: by definition

HK ∈ L2(M) ⇐⇒ E

[∫ ∞

0
H2

s K2
s d⟨M⟩s

]
< ∞.

Also,

H ∈ L2 ((K · M)) ⇐⇒ E

[∫ ∞

0
H2

s d⟨(K · M)⟩s

]
< ∞.

However,

⟨(K · M)⟩t =
∫ t

0
K2

s d⟨M⟩s

and this is just Lebesgue-Stieltjes integral, so

E

[∫ ∞

0
H2

s d⟨(K · M)⟩s

]
= E

[∫ ∞

0
K2

s H2
s d⟨M⟩s

]
.

So the integrability part is proven.
To prove the identity in (2.20), by Thoerem 68(3), we only need to show that for all N ∈ H2, the

left and right hand sides, call them L, R, satisfies

⟨L, N⟩ = ⟨R, N⟩

but this is obvious.

In the above setting,
∫ ·

0 HsdMs ∈ H2, so it is square integrable and since for general square
integrable mtg that starts with zero, the expectation of the square equals to the expectation of the
quadratic variation, we have

E

[∫ t

0
HsdMs

]2

= E

[∫ t

0
H2

s d⟨M⟩s

]
.

and its expectation is

E

[∫ t

0
HsdMs

]
= 0 ∀t ≥ 0.
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Stochastic Integration for Mtg not in H

Mostly we integrate progressively measurable processes with respect to Brownian motion, which
is a true martingale that is not in H. Although we cannot define such process globally, we can still
define it locally. Here is what I mean:

Let M be a true sqaure integrable martingale that is not neccessarily in H2, meaning E [⟨M⟩t]
might not be bounded. Let H be a progressively measurable process such that

E

[∫ t

0
H2

s d⟨M⟩s

]
< ∞ ∀t ≥ 0

Here we can define the stochastic integration ”pointwise”: let T > 0 and for all t ∈ [0, t], we define
(H · M)t to be

(H · M)t =
∫ t

0
HsdMT

s

where the process MT is

MT
t = Mt∧T.

In which case, MT ∈ H2 for all T ≥ 0, so the above definition makes sense. In the case for Brownian
motion, it does not make any difference wheather we use a fixed number T, or ues the stopped
process BτT where τT = inf{t : ⟨B⟩t = T} since ⟨B⟩t = t. The introduction of stopping time seems
extraneous, but it will serve us well when we want to define integral with respect to local mtg’s.

In the case of integration with respect to true square integrable mtg, we see that E [⟨M⟩t] =
E
(

M2
t
)
< ∞ for all t ≥ 0, so we can drop the dependent of the stochastic integral on T and just

write

(H · M)t =
∫ t

0
HsdMs

for t ∈ R+, which still makes sense pointwise for each t. We note here that the properties of
stochastic integral with respect to the general square integrable Mtgs is the same as the stochastic
integral with respect to H2 elements, due to the following theorem:

Theorem 2.4.6. Let Mc be the space of continuous square integrable true martingales, and we define the
norm on this space to be

∥M∥M2 =
∞

∑
i=1

1 ∧
√

E [⟨M⟩n]

2n

Then (Mc, ∥·∥) forms a Banach space.

We omit the proof, but it utilizes Borel-Cantelli to have uniformly convergence sequence on
compact intervals. With above theorem we can actaully define stochastic integration with respect
to square integrable Mtg’s directly. See ([KS12]) for this appraoch.

Stochastic Integration w.r.t. local Mtg’s

Here we look at stochastic integration with respect to local mtg’s. With the observation in previous
sub-section, and in the square integrable martingale section, we see that we can turn a local mar-
tingale into a true square integrable martingale that is in H2 via stopping times. But before that,
we need to specify integrability with respect to a certain local mtg:
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Definition 2.4.6. Let M be a local martingale, we define L2(M) and L2
loc(M) to be

L2
loc(M) =

{
H progressively measurable :

∫ t

0
H2

s d⟨M⟩s < ∞, a.e. ω, for all t ≥ 0
}

and

L2(M) =

{
H progressively measurable : E

[∫ ∞

0
H2

s d⟨M⟩s

]
< ∞

}
Remark 2.4.3. Where we note locally square integrable is pointwise ω square integrable (almost sure) and
square integrable is the same defintion as for M ∈ H2, which is d⟨M⟩tdP square integrable.

Remark 2.4.4. We note that L2(M) ⊂ L2
loc(N), so we can go ahead establish stochastic integration of locally

L2(M) element and it will work for L2(M) elements.

First we want to turn M into a H2 element as well as getting H2 to be square integrable with
respect to d⟨M⟩dP to use the stochastic integration we developed in the previous section. To get
those two thing together, we use the following stopping time

τn = inf
t≥0

{∫ t

0
1 + H2

s d⟨M⟩s > n
}

and we see that Mτn ∈ H2 for all n ≥ 1, since ⟨Mτn⟩t = ⟨M⟩t∧τn ≤ n for all t ≥ 0. Also,

E

[∫ ∞

0
H2

s ⟨Mτn⟩s

]
= E

[∫ τn

0
H2

s ⟨M⟩s

]
≤ n

so H ∈ L2(Mτn) and the stochastic integraiton

(H · Mτn)t =
∫ t

0
HsdMτn

s

is defined as in previous section (integration with respect to H2 element), so for any m ≥ n we have

(H · Mτn)τm =
(

1[0,τm]H
)
· Mτn = H · Mτn∧τn = H · Mτn .

This tells us that H · Mτn agrees on [0, τm] for all n ≥ m. This tells us that there is a unique process
H · M such that for all n ∈ N,

(H · M)τn = H · Mτn

which has continous sample pathes and it is adapted because it is pointwise limit of a seqeunce
of adapted processes ((H · Mτn)). So we can define stochatic integral of H with respect to M to be
H · M as above, and the resulting integration is a continous local martingale.

Just like in the case of integral with repsect to H2 element, we can characterize the stochastic
integral via quadratic variations. Let H, M be as above, and let N be another local martingale that
can vary. Let σn = inft≥0{⟨N⟩t > n}, and let Tn = τn ∧ σn, we consider the following:

⟨H · M, N⟩Tn = ⟨(H · M)τn , Nσn⟩ = H · ⟨Mτn , Nσn⟩ = H · ⟨M, N⟩Tn = (H · ⟨M, N⟩)Tn

and since Tn ↑ ∞, we see that

⟨H · M, N⟩t = H · ⟨M, N⟩t or ⟨H · M, N⟩ = H · ⟨M, N⟩
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and if X is some other local martinagle such that ⟨X, N⟩ = H⟨M, N⟩, then ⟨H · M − X, N⟩ = 0 and
let N = H · M − X we see that ⟨H · M − X⟩ ≡ 0 hence this property is unique.

It can also be shown that the properties of stochastic integrals with respect to H2 element also
holds here and the proof is very similar to the above discussion.

Now, let M be a local martingale and let Hs be such that

E

[∫ t

0
H2

s d⟨M⟩s

]
< ∞ ∀t ≥ 0.

Then for a fixed t, (H · M)t =
∫ ·∧t

0 HsdMs is a H2 element. So in this case we have

E

[∫ t

0
H2

s d⟨M⟩s

]2

= E

[∫ t

0
HsdMs

]2

.

and

E

[∫ t

0
H2

s d⟨M⟩s

]
= 0.

Integration with respect to Semi-Martingale

Now this section will be short, since if X is a semi-martinagle, then X = M + A where M is a local
martiangle and A is an process with finite variation, so we interpret the integration with respect to
a semi-martingale as

H · X = H · M + H · A

where H · M is interpreted as the stochastic integration we established before, and H · A is in-
terpreted as the usual Lebesgue-Stieltjes integrals. This definition makes sense whenever the two
integrals make sense. Also, when the integral makes sense, then the properties hold both for the
stochatic and the ”deterministic” integrals would be true.

One of the conditions for integrability is ”locally bounded”:

Definition 2.4.7. Let H be a progressively measurable process, then we say it is locally bounded if

∀t ≥ 0, sup
0≤s≤t

|Hs| < ∞, a.e.

Note that if a process is continuous, adapted and progressively measurable, then it is locally
bounded (pathwise continous implies path wise bounded). In which case, since A has finite varia-
tion, we see ∫ t

0
|Hs|d|As| < ∞ a.e.

where |At| is the total variation of A. Same for
∫ t

0 |Hs|2d⟨M⟩s since ⟨M⟩ is also of finite variation.

Dominated Convergence Thoerem and Approximation of Stochastic Integral

Here we introduce the stochastic version of the Dominated convergence theorem, which says if a
sequence of locally bounded processes that converges ”pointwise” t to an ”integrable” progressively
measurable process, and is dominated by someother locally bounded progressively measurable
process, then the stochastic integral converges in probability (which is the thrid best thing we can
hope for).
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Theorem 2.4.7. Let X = M + A be a semi martingale where M is local mtg and A is of finite variation,
and suppose Hn, H are locally bounded progressively measurable processes, and let K be a progressively
measurable process, then if

1. Hn
t → Ht a.e. ω for all t ≥ 0.

2. |Hn
t | ≤ |Kt| a.e. for all t ≥ 0, and

3.
∫ t

0 K2
s d⟨M⟩s < ∞ and

∫ t
0 |Ks|d|Vs| < ∞ a.e. for all t ≥ 0.

Then ∫ t

0
Hn

s dXs =
∫ t

0
HsdXs in Probability.

Remark 2.4.5. As discussed just before this subsection, locally bounded is sufficient for stochastic integral
to make sense.

Remark 2.4.6. For the proof, we notice that there only two things we need to show: (1) the lebesgues-Stieltjes
integral converges, which is quite obvious by usual DCT, and the other is convergence of the stochastic
integral. And at this point, it should be natrual for us to think that convergence in probability is usually
shown by convergence in Lp for some p > 0. In this case, since we can turn things into square integrable
martingales, p = 2 seems prominante.

Proof. For the lebesgues-Stieltjes part, we actually have a.e. ω convergence since for almost every
ω, we have

|Hn
t (ω)| ≤ |Kt(ω)| and

∫ t

0
K(ω)d|At(ω)| < ∞.

and Hn
t (ω) → Ht(ω) for all t for a given ω, so usual DCT kicks in and we are done with this part.

Now for the stochastic integral part, let τn = inft≥0

{∫ t
0 H2

s + K2
s d⟨M⟩s ≥ n

}
, so τn is a stopping

time, and the stochatic integral ∫ t∧τn

0
ZsdMs =

∫ t

0
ZsdMτn

s

are all H2 element for Z = H, K, Hn. We want L2 convergence, that is,

E

[∫ t∧τn

0
(Hn

s − Hs) dMs

]2

→ 0.

for all τn, however, we do have that

E

[∫ t∧τn

0
(Hn

s − Hs) dMs

]2

= E

[∫ t∧τn

0
(Hn

s − Hs)
2 d⟨M⟩s

]
Now, the thing inside the expectation converges to zero pointwise by usual DCT, since for almost
all ω, Hn

s (ω) → Hs(ω) for almost all t with respect to the measure d⟨M⟩s which is absolutely
continous with respect to the lebesgues measure. And the thing inside of the expectation is also
dominated by C

∫ t∧τn
0 |Hs|2 + |Ks|2d⟨M⟩s for some C for almost all ω. So another application of

DCT gives us the desired L2 convergence, hence convergence in probability.
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Using the stochastic dominated convergence theorem, we now can see that the there is not much
difference between stochastic integral and the integrals we see in real analysis, at least in the case
of continuous integrand:

Theorem 2.4.8. Let X be a continous semi-martingale and let H be a continous progressively measurable
continous process. If Πn are a sequence of partitions of the interval [0, t] whose mesh goes to zero, then we
have

lim
n→∞ ∑

Πn

Hti

(
Xti+1 − Xti

)
=
∫ t

0
HsdXs

where the convergence is in probability measure.

Proof. We first notice that H is an locally bounded process, and let Kt = sup0≤s≤t |Hs| < ∞, then∫ t
0 K2

s d⟨M⟩s and
∫ t

0 Ksd|At| are both finite since the integrators are of finite variations (and absolutely
continous with respect to the lebesgues measure for almost every ω). Under this case, we may use
the stochastic DCT.

Let {ti}i≤i≤n = Πn and define the sequence of progressively measurable processes:

Hn
t =


Hti t ∈ (ti, ti+1]

H0 t = 0
0 elsewhere.

In which case, we have Hn
t → Ht a.e. ω for all t since H itself is continous, and∫ t

0
Hn

s dXs = ∑
Πn

Hti

(
Xti+1 − Xti

)
by definition. So by Stochastic DCT, we are done.

Remark 2.4.7. It is important to use the left hand Hti in the approximation instead of Hti+1 . To see what can
go wrong, see page 113 of [LG16].

2.4.1 Ito’s Formula

Ito’s formula is essentially the change of variable formula for stochastic integrations. We will
see shortly that it is not much different from usual calculus change of variable formula with the
difference being a quadratic variation added as a correction term.

Theorem 2.4.9. Let X =
(
X1, . . . , Xn) be a n dimensional semi-martinagle and let F : Rn → R be a twice

continous differentiable function, then for all t ≥ 0 we have the following a.e. equality

F(Xt) = F(X0) + ∑
1≤i≤n

∫ t

0

∂F
∂xi

(Xs)dXi
s +

1
2 ∑

1≤i,j≤n

∫ t

0

∂2F
∂xixj

(Xs)d⟨Xi, X j⟩s.

Remark 2.4.8. Suppose X = M + A and to write the above equation explicitely, it is

F(Xt) = F(X0) + ∑
1≤i≤n

∫ t

0

∂F
∂xi

F(Xs)dMs + ∑
1≤i≤n

∫ t

0

∂F
∂xi

(Xs)dAs +
1
2 ∑

1≤i,j≤n

∫ t

0

∂2F
∂xixj

(Xs)d⟨Mi, Mj⟩s

We can also write the above in differential notation with the knowledge that it is actually an integral equation:

dF(Xt) = ∑
1≤i≤n

∂xi F(X)dXi
t +

1
2 ∑

1≤i,j≤n
∂xi,xj F(Xt)d⟨Xi, X j⟩t
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Proof. The proof is basically Tylor expansion, here we only prove the case where n = 1 and remark
that there is no fundamental difference between one dimensional case and higher dimensional case.

Here we assume WLOG that X = M + A where M is a martingale, since we can localize it by
τn = inft≥0{|Mt|+ |At| ≥ n}, and if the above formula is true for all mgt M, then it will be true for
local martingales. Since we can take τn to be this form, then Xτn

t would be a bounded process, then
we might as well just assume that F is compactly supported since it does not make a difference
when X is bounded. Say |M|, |A| all bounded by K.

Let Πn be a sequence of increasing partitions whose mesh goes to zero, and consider

F(Xt)− F(X0) = ∑
Πn

(
F(Xti+1)− F(Xti)

)
= ∑

Πn

F′(Xti)
(
Xti+1 − Xti

)
+

1
2

F′′ (Xti + θi∆iX)
(
Xti+1 − Xti

)2

where θi(ω) is some number between 0 and 1 and ∆iX = −Xti). We notice that F′ is continous,
so F′(Xt) is locally bounded which dominates the elementary processes Fn(Xt) = ∑Πn F′(Xti)1(Xti ,Xti+1 )

(t),

so by the approximation theorem above, the first term converges to
∫ t

0 F′(Xs)dXs in probability mea-
sure. So we only need to show the convergence of the second term to the lebesgues-Stieltjes integral.
However, the second term can be written as

∑
Πn

1
2
(

F′′ (Xti + θi∆iX)− F′′(Xti)
) (

Xti+1 − Xti

)2
+ ∑

Πn

1
2

F′′(Xti)
(
Xti+1 − Xti

)2

Call the first term J1 and second term J2. Here note that we only need to find a subsequence that
converges either in probability or a.e. to the targeting process. We note ∑Πn

[
Xti+1 − Xti

]2 → ⟨M⟩t
in probability, so we take a susbequence such that this converges a.e. Also, by continuity of F′′ and
the continuity (pathwise) of Xt, and the fact that we are working inside of an compact interval,
F ◦ X(ω)t is uniformly continous in t, hence

∑
Πn

1
2
(

F′′ (Xti + θi∆iX)− F′′(Xti)
) (

Xti+1 − Xti

)2

≤1
2

sup
ti

∣∣(F′′ (Xti + θi∆iX)− F′′(Xti)
∣∣∑

Πn

(
Xti+1 − Xti

)2

however, supi |(F′′ (Xti + θi∆iX)− F′′(Xti)| → 0 as n → ∞, and there is a subsequence such that

∑Πn

(
Xti+1 − Xti

)2 → ⟨X⟩t so the entire J1 goes to zero a.e. (for some subsequence).
Now we need to show J2 converges to the targetting thing. We take a look at the square differ-

ence term in J2:(
Xti+1 − Xti

)2
=
(

Mti+1 − Mti

)2
+ 2

(
Ati+1 − Ati

) (
Mti+1 − Mti

)
+
(

Ati+1 − Ati

)2

and since F(Xs(ω) is bounded on the interval [0, t] for a.e. ω. So when we sum things up adding
the F(Xt) term, the last two terms disapears for a.e. ω (take a.s. convergence subsequence if
neccessary). So we only need to worry about the following sum

∑
Πn

F(Xti)
(

Mti+1 − Mti

)2
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but

E

[
∑
Πn

F(Xti)
(

Mti+1 − Mti

)2 − ∑
Πn

F(Xti)
(
⟨M⟩ti+1 − ⟨M⟩ti

)]2

(2.21)

=∑
i,j

EΦiΦj (2.22)

where Φi = F(Xti)
(

Mti+1 − Mti

)2 −
(
⟨M⟩ti+1 − ⟨M⟩ti

)
, we look at the case where i ̸= j, and say

j < i, and for the sake of display setting let’s denote ξi =
((

Mti+1 − Mti

)2 −
(
⟨M⟩ti+1 − ⟨M⟩ti

))
,

and we note ξ j ∈ Fti since tj+1 ≤ ti.

E
[
ΦiΦj

]
= E

[
F(Xti)F(Xtj)ξiξ j

]
= E

[
E
[

F(Xti)F(Xtj)ξiξ j|Fti

]]
= E

[
F(Xti)F(Xtj)ξ jE [ξi|Fti ]

]
Now let’s investigate the conditional expectation inside:

E [ξi|Fti ] = E
[((

Mti+1 − Mti

)2 −
(
⟨M⟩ti+1 − ⟨M⟩ti

))
|Fti

]
= E

[
M2

ti+1
|Fti

]
− 2E

[
Mti+1 Mti |Fti

]
+ E

[
M2

ti
|Fti

]
− E

[
⟨M⟩ti+1 |Fti

]
+ ⟨M⟩ti

= E
[
(M2

ti+1
− ⟨M⟩ti+1)− (M2

ti
− ⟨M⟩ti)|Fi

]
but this is zero since M2

t − ⟨M⟩t is a martingale (recall the assumption in the beginning). So (2.21)
is really

E

[
∑

i
Φ2

i

]
= E

[
F(Xti)

2
((

Xti+1 − Xti

)2 −
(
⟨M⟩ti+1 − ⟨M⟩ti

))2
]

≤ ∥F∥∞E

[
∑
Πi

((
Xti+1 − Xti

)2 −
(
⟨M⟩ti+1 − ⟨M⟩ti

))2
]

≤ ∥F∥∞E

[
∑
Πi

(
Xti+1 − Xti

)4
+
(
⟨M⟩ti+1 − ⟨M⟩ti

)2

]

The first term goes to zero since

E

[
∑
Πi

(
Xti+1 − Xti

)4

]
≤ E[max

(
Xti+1 − Xti

)2 ∑
Πn

(
Xti+1 − Xti

)2
]

= E[max
(
Xti+1 − Xti

)2 ∑
(
Xti+1 − Xti

)2
]

where the maximum term goes to zero and the sum goes to ⟨M⟩t a.e. (take subsequence) and both
of them are bounded. The second term goes to zero as well for similar reasons, hence we have the
desired convergence.

Let’s do an application of Ito’s lemma to something called the exponential (local) martingales
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Lemma 2.4.1. Let M be a continous local martingale and we denote E(M) the process

E(M)t = exp
(

Mt −
1
2
⟨M⟩t

)
and it is an local martingale.

Proof. Note we can view M − 1
2⟨M⟩ as a semi-martingale, so apply Ito’s rule to the exponential

function to get

dE(M)t = exp
(

Mt −
1
2
⟨M⟩t

)
dM − 1

2
exp

(
Mt −

1
2
⟨M⟩t

)
d⟨M⟩t +

1
2

exp
(

Mt −
1
2
⟨M⟩t

)
d⟨M⟩t

= exp
(

Mt −
1
2
⟨M⟩t

)
dMt

so writting E(M) explicitely to get

E(M)t = 1 +
∫ t

0
exp

(
Ms −

1
2
⟨M⟩s

)
dMs

and we see that τn = inft≥0 {|Mt|+ ⟨M⟩t ≥ n} would reduce this to an true martingale.

Remark 2.4.9. We can use the same proof to show

E(λM) = exp
(

λM − λ

2
⟨M⟩

)
(2.23)

is a local martignale as well, for λ ∈ C, which would give us a complex martingale, namely, both real and
imaginary parts are continous local martingales.0

From Ito’s formula, we can derive change of variable formulas for stochastic integration:

Theorem 2.4.10 (Integration by Parts). Let M, N be two local martingales, then

MtNt = N0M0 +
∫ t

0
MsdNs +

∫ t

0
NsdMs + ⟨M, N⟩t

Proof. Let F(x, y) = xy where x, y ∈ R, so F is twice differentiable whose second derivatives are
globally bounded (this does not give us anything extra though, but it is nice), so we apply Ito’s
formula to

dMtNt = dF(Mt, Mt) = MtdNt + NtdMt + d⟨M, N⟩t

Levy’s Characterization of Brownian Motion

From here we do some ”application” of Ito’s lemma to show some important theorems. First, we
show Brownain motions’ characters are unique to Brownian motions

Theorem 2.4.11. Let B be a continous local martingale, then it is a Bronwian motion if and only if ⟨B⟩t = t.
More generally, if (B1

t , . . . , Bn
t ) is a Rn local martingale, then it is Rn Brownain motion if and only if

⟨Bi, Bj⟩t = δi,jt.
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Proof. Here are the things we need to show: (1) Bt − Bs ∼ N (0, (t− s)Id) where Id is the identity ma-
trix of Rn; (2) B has independent increments. For (1), we can utilize the uniqueness of characteristic
functions of probability measures (or random variables).

(1) Let ξ ∈ Rn, we consider E(iξ · B):

E(iξ · B)t = exp
(

iξ · Bt +
1
2
|ξ|t
)

which is still a continous local martingale. We note that for |E(iξ · B)t| ≤ e
1
2 |ξ|t which is bounded, so

E⟨E(iξ · B)t⟩t < ∞ for all t, hence it is a true martingale. Now we calculate its increment: suppose
0 ≤ s ≤ t, then

E(iξ · B)t − E(iξ · B)s = exp
(

iξ · Bs +
1
2
|ξ|t
)(

exp
(

iξ · (Bt − Bs) +
1
2
|ξ|2(t − s)

)
− 1
)

conditioning both side on Fs to see that

E

[
exp

(
iξ · (Bt − Bs) +

1
2
|ξ|2(t − s)

)
|Fs

]
= 1 (2.24)

⇒E [exp (iξ · (Bt − Bs))] = exp
(
−1

2
|ξ|2(t − s)

)
so we conclude that Bt − Bs ∼ N (0, Id(t − s)). However, from (2.24) we also note that for all A ∈ Fs
we have

E [1A exp (iξ · (Bt − Bs)) |Fs] = 1AE [exp (iξ · (Bt − Bs)) |Fs] = 1A exp
(
−1

2
|ξ|2(t − s)

)
Let φA(η) = eiη1A , then we can replace 1A above by φA and ge similar result, taking expectation to
see

E
[
eiη1A exp (iξ · (Bt − Bs))

]
= E

[
eiη1A

]
exp

(
−1

2
|ξ|2(t − s)

)
so by Kac’s theorem for independence, Bt − Bs ⊥ 1A for all A ∈ Fs, so Bt − Bs ⊥ Ft.

Continous Mtg as Time Changed Brownian Motions

Here we see that Brownian motion is a fundamental martingale for the following reason:

Theorem 2.4.12 (Dubin-Dambis-Schwartz). Let M be a continous local martingale with ⟨M⟩∞ = ∞.
Then there is a B, brownain motion such that

Mt = B⟨M⟩t

where the equality is a.e. ω.

Remark 2.4.10. The result is both obviously suprising and obviously unsuprising, since we already have
Levy’s characterization of Brownain motion, then we can image that Mτt where t = inf {s ≥ 0 : ⟨M⟩s = t}
is likely to be a Brownain motion and it is likely to satisfy the theorem.

Proof. Just as in the remark, let τt = infs≥0{⟨M⟩s = t}, and let Bt ≜ Mτt , then we want to check
this is a Brownain motion, so by Levy’s characterization of Brownian motion, we need to check the
following things:
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1. There is a filtration Gt such that Bt is a local martingale.

2. ⟨B⟩t = t, and

3. Bt is continous.

Let’s do them one by one.
(1) Let Gt ≜ Fτt = {A ∈ F∞ : A ∩ {τt ≤ s} ∈ Fs}. To check this filtration makes Bt is martingale,

let s ≤ t ≤ T then τs ≤ τt ≤ τT a.e, so we see

(MτT)τt = Mτt

and same for τs. Furthermore, MτT is an uniformly integrable martingale since ⟨MτT⟩t ≤ T is
uniformly bounded, therefore, we can apply optional sampling theorem:

E [Mτt |Fτs ] = E
[
MτT

τt |Fτs

]
= MτT

τs = Mτs

so B is indeed a martingale adapted to Gt.
(2) is true by construction.
(3) We note first that τt is left continous with right limit, where we denote the right limit by

τt+ ≜ limϵ↓0 τt+ϵ = inf{s ≥ 0 : ⟨M⟩s > t}. So by continuity of M, we see that B is at least left
continous. Since ⟨M⟩s is pathwise continuous and nondecreasing in s, so the only thing that can
give us trouble is when τt+ > τt. However, also by such property, we see that ⟨M⟩τt+ = ⟨M⟩τt .
In that case, we can show B is continous by showing that for τt+ > τt, Mτt+

τt∨s − Mτt+
τt = 0 or

Mτt+
s − Mτt+

τt∧s = 0 pathwise for s ≥ τt. One of such ways is to show the quadratic variation of
such double stopped process is zero, and here we look at the first one:

⟨Mτt+
τt∨s − Mτt+

τt ⟩ = ⟨Mτt+⟩τt∨s − ⟨Mτt+⟩τt = ⟨M⟩(τt∨s)∧τt+ − ⟨M⟩τt∧τt+

but this is zero since ⟨M⟩ is pathwise nondecreasing and continuous, so Mτt = Mτt+ = Bt = Bt+
hence B is continous.

Now, suppose ⟨M⟩∞ is not identically infinity, then we can still represent it as a time changed
Brownain motion:

Theorem 2.4.13. Let M be a local martiangle, we define

τt = inf{s ≥ 0 : ⟨M⟩s = t}, Gt = Fτt

then there is a Brownain motion w.r.t. a possibly extended filtration Ĝ‡ of G and probability space such that

Bt = Mτt on [0, ⟨M⟩∞)

and we have following representation:

Mt = B⟨M⟩t

Proof. Here we can make the assumption that there is a Brownain motion W with respect to the
filtration Gt that is independent of M, since if not, we can create in another probabiliy space a
independent Brownian motion and use product σ field to create such thing. We define the process
B as

Bt = Mτt +
∫ t

0
1τs<∞dWs
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since M and W are independent, the quadratic variation of B is

⟨B⟩t = ⟨M⟩τt +
∫ t

0
1τs<∞ds

where we note that the first term is t ∧ ⟨M⟩∞, and the second term is∫ t

0
1 − 1τs=∞ds =

∫ t

0
1 − 1⟨M⟩∞≤sds = t −

∫ ⟨M⟩∞∧t

0
ds

furthermore, Mτt is a local martignale with respect to Gt, and so is
∫ t

0 1τt<∞dWs, so Levy tells us Bt
is a Brownain motion. Furthermore, on the set {s ≤ ⟨M⟩∞}, we have

B⟨M⟩τs
= Mτ⟨M⟩t

= Mt a.e.

Two representation theorems of local martingales in terms of integral of Brownian Motions

Our first goal is to represent a local martingale in terms of a Brownain motion, possibly in a
extended probability space. We first take a look at the one dimensional case:

Proposition 2.4.1. Let (Ω,F , (Ft)t, P) be a filtered probability space, and suppose M is a local martingale
on this space with d⟨M⟩ << dt. Then there exists a Brownain motion, possibly on an extended probability
space (Ω̃, F̂ , P̃) and a Brownain motion, B, with a filtration F̃t, such that there is Xt, measurable adapted
process, with the property that ∫ t

0
XsdBs = Mt a.e. P̃.

Remark 2.4.11. Here we will assume that (Ω,F , P) is rich enough such that no extension is needed. For the
construction of the extended space, we can use the product space Ω ⊗ Ω̃ equipped with the product σ field,
F ⊗ F̃ and put in together with the product measure. For the filtration, we can use the augmented product
filtration where Ft ⊗ F̃t where overline means includes all subsets of null sets and make it right continuous.

Remark 2.4.12. Strategy of the proof: It would be great if for some Brownain motion W we have

dWt = λtdMt

form some λt. Or the second best thing, for some W such that dWt =
1√

d⟨M⟩t
dt

dMt. Then it would be very

close to be a Brownain motion.

Proof. Say d⟨M⟩t
dt = λt and since ⟨M⟩t is nondecreasing, then λt is nonnegative a.e. (ω). Moreover,

it is progressively measurable, being the limit of two such things. Let B be an brownain motion
independent of M and define

dWt = 1λt>0
1√
λt

dMt + 1λt=0dBt (2.25)

which is a local martingale since∫ t

0
1λs>0

1
λs

d⟨M⟩s =
∫ t

0
1λs ̸=0ds ≤ t.
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Moreover

⟨W⟩t =
∫ t

0
1λs ̸=0ds +

∫ t

0
1λs=0ds = t

where the first equality is by independence of M and B. So by Levy’s Characterization of Brownain
motion, we see W is a Brownain motion. Now, multiplying both side of (2.25) by

√
λt and integrate

to see ∫ t

0

√
λsdWs =

∫ t

0
1λs ̸=0dMt.

Here we might seem to be in trouble due to the fact that the integrand on the right hand side is not
identically 1, but we are actually done here:

Mt =
∫ t

0
1λs ̸=0dMs +

∫ t

0
1λs=0dMt (2.26)

however, 〈∫ ·

0
1λs=0dMt

〉
t
=
∫ t

0
1λs=0λsdt = 0

which means the second term on the right hand side of (2.26) is identically zero.

Take the idea from this proof, we can easily extend this result into higher dimensional case.

Theorem 2.4.14. Let M = (M1, . . . , Md) be a local martingale such that ⟨Mi, Mj⟩ is absolutely continous
with repsect to the Lebesgue’s measure. Then there exists a Brownain motion W, possibly on a extended
probability space, and matrix X with progressively measurable entires such that

Mt =
∫ t

0
XsdWt.

Proof. Here we perform the same trick, but a bit of linear algebra is requried to change basis. Let
Zt be defiend as

Zi,j =
d
dt
⟨Mi, Mj⟩t

which is symmetric. Also, let x = (x1, . . . , x)d) ∈ Rd, then

x · Zx = ∑
1≤i≤d

∑
1≤j≤d

xiz
i,j
t xj =

〈
d

∑
i=1

xMi

〉
t

≥ 0

so it is also nonnegative definite. So there exists Q, Λ where Q is unitary (QT = Q−1), and Λ is
diagonal with entries λi

t, such that Zt = QtΛtQT
t where all the entries are progressively measurable,

or QT
t Zt = ΛtQT

t . Now let dNt = QT
t dMt, this makes sense because each row of QT

t forms a vector
of norm 1. Now consider its quadratic variation:

d⟨Ni, N j⟩t =

〈
d

∑
k=1

qk,i
t dMk

t ,
d

∑
l=1

ql,jdMl

〉

=
d

∑
k=1

d

∑
l=1

qk,iql,jd⟨Mk, Ml⟩t

= ∑
1≤l,k≤d

qk,i
t zk,l

t ql,j
t dt = δi,jλ

i
tdt
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by diagonalization of Zt. Again, we have N really wants to be a brownain motion. Now we let {Bi}d
1

be d independent Brownain motion and say they are independent of Mt (possibly in an extended
probability space) and let

dW i
t = 1λi

t ̸=0
1√
λi

t

dNi + 1λi
t=0dBt

then again Wt is a Brownain motion since1λi
t ̸=0

1√
λi

t

 d⟨Ni⟩t = 1λi
t ̸=0dt

which takes care of the integrability issue and

d⟨W i⟩t = 1λi
t ̸=0

1
λi

t
λi

tdt + 1λi
t=0dt

which shows W is brownain motion by Levy’s characterization. Now we consider∫ t

0

√
ΛsdWs =

∫ t

0

√
ΛtΛ′dNs

where Λ′ =

(
δi,j

1√
λi

t
1λi

t ̸=0

)
, so the above equation is really

√
ΛtdWt = dNs

but dNt = QTdMt so QdNt = dMt, so we obtain

Qt
√

ΛtdWt = dMt

There is definitely some unsatisfactories of the above representation theorem, even though the
martingale is arbitrary, but we have to create a new probability space and new brownain motions.
So the natural question to aks is that, if we already have a Brownain motion, and a process is
already a martignale with resepct to the Brownain filtration, can we still represent it as integral of
some progressively measurable process against the given Brownain motion.

Before answering the question, let’s look at a remarkable fact that allow us to identify a concrete
dense set of certain L2 space:

Proposition 2.4.2. Let B be a Brownain motion and Ft be its filtration. Then the linear span of the random
variables of the following form is dense in L2

C (Ω,F∞, P):

exp

(
i

n

∑
j=1

λi
(

Bti − Bti−1

))

where 0 = t0 < t1 < · · · < tn and λi are any real numbers.
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Proof. We note that L2
C (Ω,F∞, P) is a Hilbert space, so to show the given space is dense, we only

have to show that if Z ∈ L2
C (Ω,F∞, P) is that

E

[
Z exp

(
i

n

∑
j=1

λi
(

Bti − Bti−1

))]
= 0 (2.27)

then Z = 0.
For any fixed set of {ti}n

i=1, denote Bn =
(

Bt1 , . . . , Btn − Btn−1

)
, we define a measure on Rn, we

define a measure ν on Rn by

ν(F) = E
[

Z1Bn∈F

]
with some self convincing (possibly by change of notation) we see the left hand side of (2.27) is
the fourier transform of ν. By uniqueness of Fourier transform, we see ν ≡ 0 as a measure on
Rn, so Z ≡ 0 on σ(Bt1 , Bt2 , . . . , Btn), or E[Z1A] = 0 on σ(Bt1 , Bt2 , . . . , Btn) for all finite collections of
{ti}1≤i≤n. We make the following definition for the monotone class argument

G = {A ∈ F∞ : E[Z1A] = 0}

then G contains all σ field of the form σ(Bt1 , Bt2 , . . . , Btn) which generates F∞, so by monotone class
thoerem, Z = 0 on F∞.

The proof of the following representation theorem shows us why we put the above proposition
in this position:

Theorem 2.4.15. Let B be a Brownain motion with canonical fintration F∞ and suppose that M ∈ L2(F∞, P).
Then there is a unique progressively measurable process, call hs that is in L2(B), meaning E

[∫ ∞
0 h2

t dt
]
< ∞

such that

M = E[M] +
∫ ∞

0
hsdBs.

Remark 2.4.13. Now it is clear why the above theorem is useful in here, since we can approximate M with
linear combinations of (2.27) which is exponential martingale of a stochastic integral so we can apply Ito’s
lemma to it.

Proof. Assume WLOG that M is a centered random variable. Before we forget, let’s show unique-
ness first. Suppose h, h′ both achieve the same result, then

E

[(∫ ∞

0
htdBt −

∫ ∞

0
h′tdBt

)2
]
= E

[(∫ ∞

0
ht − h′tdBt

)2
]
= E

[∫ ∞

0

(
hs − h′s

)
ds
]
= 0

which gives us uniqueness.
For existance, in the light of Proposition 67, we first consider the following: let hn

s ≜ ∑n
i=1 λi1(ti−1,ti]

where t0 = 0 and ti strictly increasing. Then

Mn
t ≜

∫ t

0
hn

t dBt =
n

∑
i=1

λi
(

Bti − Bti−1

)
is a true martingale, apply Ito’s lemma to the exponential function

exp(Mn
t ) = 1 +

∫ t

0
exp(Mn

s )h
n
s dBs +

1
2

∫ t

0
exp(Mn

s ) (h
n
s )

2 dt
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so

exp
(

iMn
t +

1
2

∫ t

0
(hn

s )
2 ds
)
= 1 +

∫ t

0
exp (Mn

s ) hn
s dBs

so M∞ can be written as the required form, namely,

exp(iMn
∞) = exp

(
−1

2

∫ ∞

0
(hn

s )
2 ds
)(

1 +
∫ ∞

0
exp(Mn

s )h
n
s dBs

)
(2.28)

where we note that hn
s is deterministic function on R+. Now, let M ∈ L2

C(F∞, P), then by density it
can be written as infinite sum of exp(iMn

∞)’s that converges in L2, which is still the above form.

Since we can represent L2(F∞) random variable via stochastic integration with respect to Brow-
nian motion, we can also write any L2 bounded martingales in such term: Mt be a martingale,
then since L2 boudned, hence uniformly integrable hence closed hence there is M∞ such that
Mt = E[M∞|Ft] and let ht be such that

M∞ = E[M∞] +
∫ ∞

0
hsdBs

then the second term on the right hand side is a true martinale, hence

Mt = E[M∞|Ft] = E[M∞] +
∫ t

0
hsdBs.

Now, with the help of localization, we can prove the same thing for continous local martingales.
We orgnize this into a theorem:

Theorem 2.4.16 (Representation of Mc,loc as integration against BM). Let B be a Brownain motion with
filtration Ft, and let M ∈ F c,loc with the same filtration. Then there is a unique progressively measurable
process, cal ht in Lloc(B), meaning

∫ t
0 h2

s ds < ∞ a.e., such that

Mt = C +
∫ t

0
hsdBs a.e.

Girsanov’s Theorem

Since we used exponential martingales in the previous subsection extensively, we might as well look
at another representation theorem involving exponential martignales and set us up for Girsanov’s
theorem

Theorem 2.4.17 (Real exponential mtgs). Let Z > 0 be a real valued process, then it is a local martingale
if and only if there is another local martignale M such that

Z = E(M)t ≜ exp
(

M − 1
2
⟨M⟩

)
where M is unique. Furthermore, if N is another local martingale, then

⟨N, M⟩t =
∫ t

0

1
Zs

d⟨Z, N⟩s
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Proof. For the first assertion, the converse is a simply application of Ito’s lemma: let M be a local
martingale, then

Zt ≜ E(M)t = exp(Mt −
1
2
⟨M⟩t) = 1 +

∫ t

0
E(M)sdMs

which is a local martiangle.
Now for the converse, suppose Z is a striclty positive local martingale, then consider

log(Zt) = log(Z0) +
∫ t

0

1
Zs

dZs (2.29)

which is also a local martingale by positivity of Z. Take the exponential we’d see the representation.
Now for the last assertion, we note that Mt = log(Z0) +

∫ t
0

1
Zs

dZs, and now the equility is
obviuos.

We recall that positive local martingales with M0 ∈ L1 is a super martingale by conditional
Fatou’s lemma. Furthermore, if a super martingale is a true martingale if and only if it has constant
expectation since

E [|Ms − E [Mt|Fs]|] = E [Ms − E [Mt|Fs]] = E[Ms]− E[Mt] = 0.

Therefore, a positive local martinagle (including a exponential local martingale) is a true martingale
if and only if it has constant expectation.

Now suppose Z is a true positive martingale on the probability space (Ω,F , P) with respect to
the filtration {Ft}t. We define a new meausere by the following formula:

PT(A) = E [1AZT] ∀A ∈ Ft for 0 ≤ t ≤ T.

We note that this definition is consistance in the sense that for a fixed s and A ∈ Fs, and for all
t ∈ [0, T], we have

Pt(A) = PT(A)

by the Martingale property.
The following theorem tells us the relation between the measure PT and the original measure

P:

Lemma 2.4.2. Let PT, Z be defined as above, then for any Y ∈ L1, then

ET [Y|Fs] =
1
Zs

E [YZt|Fs]

both in P, PT.

Proof. Here we need to show that if we take the expectation ET and E on both sides on any set
A ∈ Fs, they agrees separately. So

ET [1AET [Y|Fs]] = ET [1AY] = E [YZT1A]

and

ET

[
1A

1
Zs

E [YZT|Fs]

]
= E

[
ZT

Zs
E[YZT1A|Fs]

]
= E[YZT1A]

where the last equality is obtained by taking conditional expectation inside conditioned on Fs, so
ET part is taken care of.

For the second part, we don’t actually have to take the expectation E on both sides (I can’t do
it anyway), but we observe that they are mutually absolutely continous due to the assumption that
ZT > 0, so the equality also holds in P.
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Now we are ready for the first part of our big theorems. But before that, let’s recall that since Zt
is a positive martingale, then it can be written as

Zt = exp
(

Mt −
1
2
⟨M⟩t

)
(2.30)

Where M is a local martiangle here. However, by the stochastic representation of local martingales
in terms of Brownain motions, there exists X⃗t and W⃗t of d dimensional progressively measurable
processes and Brownain motion respectively, possibly in an extended probability space. So from
now on, we will assume Zt is of the following form:

Zt = exp

(
d

∑
i=1

∫ t

0
Xi

sdW i
s −

1
2

∫ t

0
∥X⃗s∥ds

)

where the norm is the usual Rd Euclidean norm, and we will assume, for now, Zt is a true martin-
gale. Also, since the above form depens on X, we denote it as Zt(X) to record this fact.

Theorem 2.4.18. Suppose Z(X) is a true martingale of the form in (2.30) with respect to Ft under the
probability space (Ω,F , P). Let P̃T be defined as before, P̃T(A) = E [1AZT] for all A ∈ Ft for 0 ≤ t ≤ T.
Let M be a local martingale with respect to the same filtration, then

M̃t ≜ Mt −
d

∑
i=1

∫ t

0
Xi

sd⟨W i, M⟩s (2.31)

is a local martingale under P̃T. Also, if N is another local martiangle and

Ñt = Nt −
d

∑
i=1

∫ t

0
Xi

sd⟨W i, N⟩s

then

⟨N, M⟩t = ⟨Ñ, M̃⟩t a.e. P and P̃T (2.32)

Proof. For the first part, it is pretty obvious what to do now: we apply the previous lemma to look
at the conditional expectation:

ẼT

[
M̃t|Fs

]
=

1
Zs(X)

E
[

M̃tZt|Fs

]
(2.33)

Now, the conditional expectations are note neccessarily defined since M is only assumed to be a
local martingale. So here we assume WLOG that M is a unifromly integrable local martingale (or
even bounded). Here we apply the integration by parts formula to M̃tZt under the measure P:

d
(

M̃tZt(X)
)
= Zt(X)dM̃t + M̃tdZt(X) + d⟨M, Z(X)⟩t (2.34)

but we recall that

dZt(X) =
d

∑
i=1

Zt(X)dW i
t
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and note that Zt(X)dM̃t admits a stochastic integral part and a Lebesgues-Stieltjes’ integral part,
and the latter is

−
d

∑
i=1

Xi
tZt(X)d⟨M, W i⟩t (2.35)

and expand d⟨M, Z(X)⟩t to get

d⟨M, Z(X)⟩t =
d

∑
i=1

Zt(X)Xi
td⟨W i, M⟩t

which cancels with (2.35), so the remaining part of (2.34) are all stochastic integrals:

M̃tZt(X) = Z0(X)M0 +
∫ t

0
Zt(X)dMt +

d

∑
i=1

∫ t

0
M̃sZs(X)Xi

sdW i
s

which is a local martingale in P. then use the relation in (2.33) to see that

ẼT

[
M̃t|Fs

]
= M̃s P, P̃T a.e.

so M̃ is a local martiangle under P̃T.
For the second assertion, we can use the fact that the corss-variation of two semi-martingales is

equal to the quadratic variation of their local martingale parts. Here, M̃, Ñ are local martingales un-
der P̃T and are semi-martiangles under P, similar for M, N: local mgt under P and semi-martingale
under P̃T.

Or, one can use the definition of quadratic variation for local martingales and play around like
[KS12] did.

Here comes the theorem with the name of this subsection:

Theorem 2.4.19 (Girsanov’s Theorem). Same setting as above, and suppose Z(X) is a true martingale
with W⃗ as the Brownian motion occuring in Z(X), then the process:

W̃ i
t ≜ W i

t −
∫ t

0
Xi

sds

is a Brownain motion under
(

Ω,F , P̃T

)
.

Proof. Replacing the M in (2.31) of Theorem 83 with W i to see

W̃ i
t = W i

t −
∫ t

0
Xi

sds

is a local martiangle, and now we use (2.32) to see that the quadratic variation of W̃ is t under
P̃T.

Now we take a look at an application of Girsanov’s theorem. Recall that the distribution of
Brownain hitting time at level a ̸= 0 is

fτa(t) =
|a|√
2πt3

exp
(
− a2

2t

)
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this is due to symmetry of Brownain motion since when a > 0 we don’t have the absolute value.
Now let W be a Brownain motion and W̃t = Wt − µt, then it is a Brownain motion under the

measure

Pµ(A) = E [1AZt] , A ∈ Ft

where Zt = exp
(

µWt − 1
2 µ2t

)
, then we call Wt = W̃t + µt the Brownain motion with drift µ under

Pµ. Here, Girsanov’s theorem gives us an easy way to calculate the distribution the hitting time of
a Brownain motion with drift:

Pµ [τb ≤ t] = E [1τb≤tZt] (2.36)
= E [1τb≤tE [Zt|Ft∧τb ]]

= E [1τb≤tZt∧τb ]

= E [1τb≤tZτb ]

= E

[
1τb≤t exp

(
µb − 1

2
µ2τb

)]
where we used optional sampling theorem to the bounded stopping time τn ∧ t. Writting the last
expression in terms of the density function we get

Pµ(τb ≤ t) =
∫ t

0
exp

(
µb − 1

2
µ2s − b2

2s

)
b√

2πs3
ds

So the density of τb udner Pµ is

P [τb ∈ dt] =
d
dt

P [τa ≤ t] =
b√

2πt3
exp

(
− (µt − b)2

2t

)

Now we look at (2.36), and take t → ∞ to see that

Pµ [τb < ∞] = E

[
1τ<∞ exp

(
−1

2
µ2τb

)]
exp (µb)

= exp (µb − |µb|)

where the last equality is obtained by some calculation (oh, well).
The following Theorem is a direct consequence of (2.8)

Theorem 2.4.20. Let B, Z, P, Pµ be defined as above, then the neccessary and sufficient condition for the
Wald’s idenity

E

[
exp

(
µWT − 1

2
µ2T

)]
= 1

to holds for the stopping time T is

Pµ [T < ∞] = 1.

In particular, if b, µ ∈ R, and µb ≥ 0, then the Wald’s identity above holds for the stopping time

Sb = inf{t ≥ 0 : Wt − µt = b}.
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Here is another condition about Wald’s identity for exponential martiangle:

Theorem 2.4.21. Let τ be a stopping time of the brownain motion B, then

E
[
e

τ
2

]
< ∞ ⇒ E

[
exp

(
Bτ −

1
2

τ

)]
= 1.

Proof. By the previous thoerem, we see that τb = inf{s ≥ 0 : Bt − t = b} satisfies the Wald’s idenity,
so let τ satisfies the condition given, then

1 = E

[
exp

(
Bτ∧τb −

1
2

τ ∧ τb

)]
= E

[
exp

(
Bτb −

1
2

τb

)
1τ≥τb

]
+ E

[
exp

(
Bτ −

1
2

τ

)
1τ<τb

]
by the condition given, we see when we take b → ∞, the first term vanishes (also by DCT) so
we only have to worry about the last term. However, note that the integrand of the last term is
monotone w.r.t. b, so by monotone convergence theorem, we have the desired result.

Now we state and prove a condition for which E(M) is a uniformly integrable martingale:

Theorem 2.4.22. Suppose M is a local martiangle, then

E

[
exp

(
1
2
⟨M⟩∞

)]
< ∞ ⇒ E [Et(M)] = 1.

Proof. By the condition given, ⟨M⟩∞ < ∞ a.e. Also recall that we can represent M with a time
changed Brwonain motion, namely,

Bt = Mτt on [0, ⟨M⟩∞)

is a brownain motion with respect to the filtration Gt ⊃ Fτt where τt = inf{s ≥ 0 : ⟨M⟩s = t}
and Ft is the original filtration of M. Then we claim ⟨M⟩∞ is a stopping time with repsect to Gt.
Consider

{⟨M⟩∞ ≤ t} ∩ {τt ≤ s} = ∅ ∈ Fs

{τt ≤ s} means ⟨M⟩ reaches t before s, so the intersection is the empty set. Then use the previous
theorem to get the desired conclusion.
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