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1 Overview3

My research centers on both theoretical and applied probability. On the theoretical side, I focus on stochastic4

partial differential equations (SPDEs) on general metric measure spaces, where I have extended various5

comparison principles that hold for SPDEs on R to equations on more general spaces. I also computed the6

extinction probability and proved a universality-type result for the stochastic FKPP equations. Additionally,7

I have developed analytic tools for handling singular SPDEs on rough spaces. On the applied side, I focus on8

spatial stochastic modeling of biological systems, where I have developed a mechanistic model for interaction9

between virus and mutations in two-dimensional domains, along with a efficient stochastic simulation scheme.10

The following is a list that summarize my researches:11

1. Project: SPDEs on metric measure spaces12

• I proved compact support and strong comparison principles for SPDEs on general spaces.13

2. Project: Extinction probability of stochastic FKPP and its dual particle system14

• I derived a formula for the extinction probability of solutions to stochastic FKPP and identified15

the invariant distribution of Branching-Coalescing Brownian motions.16

3. Project: Universality of stochastic FKPP17

• I established an SPDE equivalent to the Kingman coalescent universality.18

4. Project: Singular SPDEs on rough spaces19

• I established a para-product framework on general spaces with sub-Gaussian heat kernels.20

5. Project: Patch formation due to stochastic effects in biological modeling21

• Developed a hybrid simulation scheme for 2D stochastic modeling in biological systems.22

2 SPDEs: from theories to applications23

Consider the stochastic heat equation in Rn with a trivial initial condition and space-time white noise Ẇ :

∂tut =
1

2
∆ut + Ẇ , u0 ≡ 0.

The (mild) solution is given by ut(x) =
∫ t

0

∫
Rn pt−s(x, y)Ẇ (dy, ds), where pt(x, y) is the n-dimensional heat24

kernel. By computing its second moment, one finds E[ut(x)
2] < ∞ if and only if n < 2. This indicates, for25

dimensions n ≥ 2, the solution to the above equation is not function-valued. Consequently, for n ≥ 2, we26

cannot expect to solve a nonlinear stochastic heat equation with space time white noise in the classical sense.27

However, I demonstrated that function-valued solutions may still exist when the ’dimension’ is in between28

one and two is non-integer and proved various comparison principles for such solutions. Additionally, I29

established key estimates on general metric measure spaces that carry a sub-Gaussian heat kernel, enabling30

us to solve certain singular SPDEs when the ’dimension’ is between two and three.31
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2.1 Strong comparison principle of SPDEs on metric measure spaces[5]32

I focus on spaces (X,m, d) that carry a heat kernel and consider non-linear equations with multiplicative33

Gaussian noises that is white in time and possibly colored in space:34

∂tu = Lu+ b(u) + σ(u)Ẇ , (1)

where L is the generator to an X-valued Hunt process. An important question is: when does the strong35

comparison principle (SCP) hold? i.e. when is it true that if u1, u2 solves (1) with u1(0, ·)− u2(0, ·) being36

a nontrivial nonnegative function on X, then P(u1(t, x) > u2(t, x), ∀t > 0, x ∈ X) = 1? Prior to my results,37

not even the weak comparison principle was shown for SPDEs in general settings. However, I resolved this38

question in the following theorem (see [5] for a more general statement):39

Theorem 1 (Strong Comparison Principle). Suppose (X, d,m) is a locally compact, doubling length space,
and L generates a Hölder continuous heat kernel that satisfies, for some 1 ≤ α < β and a positive, non-
decreasing function Φ : R+ → R+,

pt(x, y) ≍ t−α/βΦ

(
d(x, y)

t1/β

)
, and Φ(a) + Φ(b) ≲ Φ(a+ b).

Then, if Ẇ is space-time white noise, the equation (1) is well-posed, and the SCP holds provided b and σ40

are globally Lipschitz on R.41

Remark 1. Theorem 1 opens up the possibility of solving the KPZ equation on fractals, such as the Sierpiński42

Gasket, via a Cole-Hopf type transform.43

Example 1 ((Fractional) Parabolic Anderson Model). Let n ≥ 2 be an integer, let (X, d,m) denote the44

n-dimensional Sierpiński Gasket, and let L denote the natural Laplacian on X. Suppose δ ≥ 0 is sufficiently45

small. For all initial values u0 ∈ C+
b (X), there exists a unique solution to the parabolic Anderson model given46

by:47

∂tu = −(−L)1−δu+ uẆ ,

where −(−L)1 := L. If u0 is not identically zero, then P(ut(x) > 0, ∀t > 0, x ∈ X) = 1.48

2.2 Compact Support Property [5]49

Previous research for SPDEs on R, as outlined in [9], demonstrated that if the noise coefficients σ is degenerate50

in equation (1), then the compact support property (CSP), i.e. if u0 ∈ C+
c , then any non-negative solution,51

u, to (1) satisfies P(ut(·) ∈ C+
c , for all t > 0). In collaboration with Louis Fan and Zhenyao Sun, I have52

extended this result to general metric measure spaces (see [5] for a more general statement).53

Theorem 2. Suppose (X,m, d) is a locally doubling space, and L generates an X-valued diffusion process that
admits a heat kernel with sub-Gaussian upper bound and is Hölder continuous, i.e. there exists 1 ≤ α < β
and c > 0 so that

pt(x, y) ≲ t−α/β exp

(
−c

(
d(t, x)/t

1
β

) β
β−1

)
.

Assume b and σ satisfy, for some C > 0 and θ ∈ (0, 1/2],54

|b(u)| ≤ C|u|, σ(0) = 0, and
1

C

√
|u| ≤ |σ(u)| ≤ C(|u|+ |u|θ), for all u ∈ R. (2)

Then for any u0 with tempered growth, there exists a (probabilistic) weak solution to (1), and the CSP holds.55

Remark 2. Theorem 2 enables us to discuss the limit shape of the compact support of the solution and its56

asymptotic speed on general spaces (e.g., regular graphs, fractals), particularly for the FKPP equation and57

super-Brownian motion density. On R, the speed is detailed in [8].58
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Example 2 (Super-Brownian Motion Density). Let (X,m, d) be the n-dimensional Sierpiński Gasket or
n-regular metric tree, and let L be the natural Laplacian on X. For any initial value u0 ∈ C+

c (X), there exists
a non-negative solution u to the equation

∂tu =
α

2
∆u+

√
uẆ ,

and the support of ut(·) remains compact for all t > 0, almost surely.59

2.3 Stochastic FKPP and interacting particle system [4]60

I have computed the extinction probability of stochastic FKPP equations on metric graphs with space-time61

white noise: for β, γ ≥ 0,62

∂tu =
α

2
∆u+ βu(1− u) +

√
γu(1− u)Ẇ . (3)

Theorem 3. Suppose (X,m, d) is a metric graph, and u solves (3) with initial value u0 ∈ B(X; [0, 1]). Then

Pu0

(
lim
t→∞

ut = 0
)
=

exp
(
− 2β

γ m(u0)
)
− exp

(
− 2β

γ m(X)
)

1− exp
(
− 2β

γ m(X)
) ,

where m(u0) :=
∫
X u0(x)m(dx), with the conversion e−∞ := 0 for m(X) = ∞.63

Theorem 3 allows us to study the invariant measure of a system of branching Brownian motion with64

singular interactions. Consider a system of independent Brownian particles, each particle split into two at65

rate β. Additionally, each particle pair (i, j) coalesces into one at rate γ
2L

i,j , where Li,j is their intersection66

local time. This system of interacting particles is called branching coalescing Brownian motions (BCBM).67

The invariant distribution of BCBM is claimed to be a Poisson point process in the literature, though no68

proof was given.69

Theorem 4. Let (Xt)t≥0 be a system of BCBM on a metric graph (X, d,m) with branching rate β and70

coalescing rate γ
2L

i,j for each particle pair (i, j). Then the unique stationary distribution of X is the Poisson71

random measure on (X,m) with intensity measure 2β
γ m(dx).72

The duality formula from [1] is a critical analytical tool in this research. For BCBM with index I(t),
({Xi

t}i∈I(t))t≥0 with branching and coalescing rates β and γ
2 respectively, and where u is the solution to (3).

If X0 = (x1, . . . , xn) ∈ Xn, then we have the duality formula

E

[
n∏

i=1

ut(xi)

]
= EX0

 ∏
i∈I(t)

u0(X
i
t)

 .

2.4 Universality of stochastic FKPP [4]73

I considered the universality of the FKPP equation (3) and showed that a class of Coordinated Particle74

systems, introduced in [2], converges to solutions of the stochastic FKPP equation (3). More precisely, let75

{Λi}i be a family of measures on [0, 1] such that
∫ 1

0
Λi(dy) = c. For each n ∈ N, we let {Vi = V

(n)
i }n−1

i=0 be a76

system of SDEs with jumps on a discrete circle, given by77

dVi(t) =

[
α
n2

2
(Vi+1 − 2Vi + Vi−1) + βVi(1− Vi)

]
ds+

√
γVi(1− Vi)

h
dBn

i (s)

+

∫
[0,t]×[0,1]

y
(
1[0,Vi(s−)](u)− Vi(s−)

)
Nn

i (dy duds),

(4)
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where {Bn
i } is a system of independent Brownian motions, and {Nn

i } is a family of independent Poisson78

random measures on (0, 1]× [0, 1]× R+ with intensity measures nΛi(dy)
y2 × du× ds.79

Observe that in equation (4), the jump size remains large as n → ∞, so the standard method for proving80

tightness breaks down. However, using techniques from hydrodynamic limits, I demonstrated the universality81

of stochastic FKPP via the following convergence theorem:82

Theorem 5. Let {V (n)}n∈N be solutions to (4) on the discrete circles with fixed initial conditions bounded83

between 0 and 1. Then the sequence of processes is tight, and any limiting point is a solution to the stochastic84

FKPP equation:85

∂tu =
α

2
∆u+ βu(1− u) +

√
(γ + c)u(1− u) Ẇ .

Remark 3. Theorem 5 is the SPDE equivalent of Kingman coalescent universality.86

2.5 Singular SPDEs on Metric Measure Spaces [3]87

One of my ongoing projects is to consider the Φ4 model on metric measure spaces (X , d,m) with sub-Gaussian88

heat kernel estimates. Specifically, there exist dh ≥ dw ≥ 2 such that the heat kernel generated by L satisfies,89

for t ∈ (0, 1] and x, y ∈ X ,90

pt(x, y) ≲ t−
dh
dw Φ

(
d(x, y)

t
1

dw

)
,

where Φ(r) = exp(r
dw

dw−1 ) for r ≥ 0. It turns out there is a natural definition of Besov spaces Bα
p,q for any91

p, q ∈ [1,∞] and α ∈ R, in terms of the heat kernels. For α < 0, Bα
p,q contains generalized functions that are92

not pointwise defined, such as space-time white noise.93

In this work, I have generalized two important analytic estimates used to study Φ4 models on two-94

dimensional spaces R2: the paraproduct estimates and Schauder estimates.95

Theorem 6 (Paraproduct Estimates). Suppose (X , d,m) is a metric measure space and L is a self-adjoint96

operator that generates a heat kernel satisfying the above sub-Gaussian estimates and is Hölder continuous97

in (x, y) ∈ X 2. Then, for some θ > 0 and 0 < α + β < θ, if f ∈ Bα
∞,∞ and g ∈ Bβ

∞,∞, there exists a98

decomposition of f · g such that99

∥f · g∥Bα∧β ≲ ∥f∥Bα · ∥g∥Bβ ,

where ∥ · ∥Bα denotes the corresponding norm in the Besov space Bα
∞,∞.100

Let α ∈ R, and define for v : R+ → Bα the operator R(v)t :=
∫ t

0
Pt−sv(s) ds for t ≥ 0.101

Theorem 7 (Schauder-Type Estimates). For any regularity index β ∈ R, any positive time horizon T , and102

v ∈ C([0, T ];Bβ), we have R(v) ∈ C([0, T ];Bβ+dw).103

Theorems 6 and 7 will enable us to study the Φ4 equation on non-smooth spaces for which there exists104

an L generating a sub-Gaussian heat kernel and a space-time white noise W :105

∂tu = Lu− u3 + Ẇ .

3 Spatial stochastic modeling in biological systems106

My research on stochastic modeling mainly focuses on modeling the spatial phenomena of biological systems.107

This research direction is relatively new, and there are few models that consider the spatial behavior of108

biological systems in one- or two-dimensional domains.109
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Consider viruses and virus-like defective interfering particles (DIPs) growing on a petri dish. The spatial110

distribution of viruses and DIPs is never a perfect disk; instead, it appears rather patchy. However, conven-111

tional PDE modeling for spatial dynamics cannot capture this feature. On the other hand, modeling complex112

biological systems via Markov chains is computationally expensive. In collaboration with Louis Fan, Wing-113

Cheong Lo, and Qiantong Liang in [7], we developed a mathematical model and a compartmental-based114

hybrid method that combines both deterministic and stochastic models. This approach is computationally115

efficient and effectively captures the patchiness of the spatial distributions of viruses and DIPs.116

I am also working on a similar model to [7], I consider viruses growing on a two-dimensional domain117

with mutations. It was shown experimentally in [10] that certain mutants with shorter genomes gained118

an advantage in both single-step growth and spatial spreading. I have developed a modeling scheme that119

allows us to sample the random emergence of mutations with growth advantages. I am also developing a120

mathematical model that captures the spreading speed of viruses and mutants.121

4 Future Research Interests and Goals122

In my future research endeavors, I aim to expand and diversify the scope of my work on SPDEs, stochastic123

modeling, and analysis as in [6]. The key projects I plan to undertake include:124

1. In collaboration with Louis Fan and Adrián González-Casanova, I am focusing on applying the duality125

techniques discussed earlier to a broader array of SPDEs and studying the long-term behavior of both126

solutions to SPDEs and dual particle systems.127

2. I plan to investigate wave propagation speed in solutions to the stochastic FKPP on d-regular metric128

graphs. This study will to provide valuable insights into wave dynamics in non-linear heat equations.129

3. Utilizing the analytic estimates I have established, I intend to investigate singular SPDEs on general130

metric measure spaces, starting with the Φ4 model.131

4. For spatial modeling of biological systems, I plan to continue working with Louis Fan and John Yin to132

quantitatively capture the spatial features of interactions between viruses and mutants.133

These research directions are not only a natural progression of my current work but also open avenues for134

exploring new and challenging problems in the realms of SPDEs and stochastic modeling in mathematical135

biology.136
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